Skip to main content

Olive

  • Chapter
  • First Online:
  • 2109 Accesses

Abstract

The scarce knowledge about the genetics of the olive tree is not comparable to the great impact of its cultivation on the economy and culture of Mediterranean countries. Actually, the polyploid nature of some Olea europaea subspecies has been recently confirmed by the use of new techniques and methodologies, like microsatellite markers and flow cytometry analyses.

The most extended idea among the researchers is that the origin of olive cultivation goes back to the Prehistory in the Eastern Mediterranean. The use of cytoplasmic DNA markers to trace olive migration routes has allowed identifying, at least, two possible centres of origin for the olive tree, located to the east and the west of the Mediterranean Sea, Near East and Maghreb. Nowadays, the olive tree cultivation is concentrated in Mediterranean-type climate regions with benign winters and dry and hot summers.

Modern olive oil industry requires more competitive cultivars better adapted to the new trends in olive growing. Breeding programmes undertaken have focused in obtaining new cultivars with a combination of superior characteristics, like high productivity, low vigour and compact plant architecture, earliness of flowering and fructification, resistance to pathogens and pests (i.e., leaf spot, Verticilium wilt and olive knot), among agronomic traits; and high oil content and quality, as oil traits.

The detection of a large number of mislabellings, homonyms and synonyms has raised the need of easy and accurate cultivar identification methods to manage properly the rich olive biodiversity. Up to date, morphological traits are the only markers accepted and used by the International Plant Genetic Resources Institute (IPGRI, Rome) and the International Olive Oil Council (IOOC), though their usefulness is being constantly strengthened by molecular markers to unambiguously discriminate among individuals. The use of molecular markers can speed the breeding programmes up, not only being used in identification and compatibility studies, but in the selection of individuals with desirable agronomic characteristics in an early stage (marker-assisted selection, MAS). Isozymes became the biochemical markers most widely used in plant breeding, though they have been superseded by genetic markers. Most of them have been used with identification purposes, some cases of homonyms and synonyms being solved, and to estimate the genetic distances among very diverse sources of material (wild, feral and cultivated forms). In this sense, microsatellite markers have revealed the exotic germplasm as a source of new variability, wild genotypes being grouped together in a different gene pool than the cultivated forms. Clusterings of olive cultivars according to economically important traits have been described, what could be very useful when it comes to design breeding crosses. And the genetic relationships among olive cultivars and genotypes selected from a breeding programme that ultimately has rendered a new variety have been elucidated. Furthermore, microsatellites have become tremendously useful for checking the paternity of olive progenies from controlled crossings and exploring the compatibility relationships among olive cultivars, which is vital to design effective crosses in breeding programmes. Linkage maps in olive are needed, so markers linked to the traits of interest can be identified. Up to date, restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP) and microsatellite markers have been used to construct linkage maps.

Genetic transformation can significantly contribute to plant breeding by generating additional genetic diversity and introducing alleles that encode desirable traits into superior cultivars. The progress in the genetic transformation methodologies in olive must be accompanied by the design of efficient regeneration protocols, via organogenesis and somatic embryogenesis.

Real-time quantitative PCR (qPCR) and real-time quantitative reverse-transcription PCR (qRT-PCR) have contributed to monitor the sanitary status of olive plants that is essential to undertake successful breeding programmes. These techniques have also been used to infer the resistance or susceptibility level of particular cultivars to olive leaf spot, this application being very valuable as a breeding tool.

From MAS to expression studies, without forgetting genetic transformation, the olive research community has used these technological innovations to acquire a deeper knowledge of the species and to transfer it to breeding programmes, what is providing the first promising results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alabdullah A, Elbeaino T, Minafra A, Digiaro A, Martelli GP (2009) Detection and variability of olive latent virus 3 in the Mediterranean region. J Plant Pathol 91:521–525

    CAS  Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:339

    Google Scholar 

  • Amane M, Lumaret R, Hany V, Ouazzani N, Debain C, Vivier G, Deguilloux MF (1999) Chloroplast-DNA variation in cultivated and wild olive (Olea europaea L.). Theor Appl Genet 99:133–139

    CAS  Google Scholar 

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421

    CAS  Google Scholar 

  • Baldoni L, Pellegrini M, Mencuccini M, Angiolillo A (2000) Genetic relationships among cultivated and wild olives revealed by AFLP markers. Acta Hort 521:275–283

    CAS  Google Scholar 

  • Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, Vendramin GG, Buonamici A, Porceddu A, Sarri V, Ojeda MA, Trujillo I, Rallo L, Belaj A, Perri E, Salimonti A, Muzzalupo I, Casagrande A, Lain O, Messina R, Testolin R (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231

    CAS  Google Scholar 

  • Bandelj D, Jakse J, Javornik B (2001) Identification of olive (Olea europaea L.) cultivars by molecular markers. Zbornik Biotehniske Facultete Univerze v Ljubljani. Kmetijstvo 77:11–17

    Google Scholar 

  • Bandelj D, Jakse J, Javornik B (2004) Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica 136:93–102

    CAS  Google Scholar 

  • Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en Andalucía. Ministerio de Agricultura, Junta de Andalucía, Madrid

    Google Scholar 

  • Barranco D, Rallo L (1985) Las variedades de olivo cultivadas en España. Olivae 9:16–22

    Google Scholar 

  • Barranco D, Rallo L (2000) Olive cultivars in Spain. Hort Technol 10:107–110

    Google Scholar 

  • Barranco D, Cimato A, Fiorino P, Rallo L, Touzani A, Castañeda C, Serafin F, Trujillo I (2000a) World Catalogue of Olive Varieties. International Olive Oil Council, Madrid

    Google Scholar 

  • Barranco D, Trujillo I, Rallo P (2000b) Are Oblonga and Frantoio olives the same cultivar? Hort Sci 35:6

    Google Scholar 

  • Bautista R, Crespillo R, Cánovas FM, Claros MG (2003) Identification of olive-tree cultivars with SCAR markers. Euphytica 129:33–41

    CAS  Google Scholar 

  • Belaj A, Trujillo I, De la Rosa R, Rallo L (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hort Sci 126:64–71

    CAS  Google Scholar 

  • Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644

    PubMed  CAS  Google Scholar 

  • Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing relationships in olive. Theor Appl Genet 107:736–744

    PubMed  CAS  Google Scholar 

  • Belaj A, Rallo L, Trujillo I, Baldoni L (2004) Using RAPD and AFLP markers to distinguish individuals obtained by clonal selection of ‘Arbequina’ and ‘Manzamila de Sevilla’ olive. Hort Sci 39:1566–1570

    CAS  Google Scholar 

  • Belaj A, Muñoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458

    PubMed  CAS  Google Scholar 

  • Benitez Y, Botella MA, Trapero A, Alsalimiya M, Caballero JL, Dorado G, Muñoz-Blanco J (2005) Molecular analysis of the interaction between Olea europaea and the biotrophic fungus Spilocaea oleagina. Mol Plant Pathol 6:425–438

    PubMed  CAS  Google Scholar 

  • Bertolini E, Olmos A, Martinez MC, Gorris MT, Cambra M (2001) Single-step multiplex RT-PCR for simultaneous and colourimetric detection of six RNA viruses in olive trees. J Virol Methods 96:33–41

    PubMed  CAS  Google Scholar 

  • Bertolini E, Olmos A, Lopez MM, Cambra M (2003a) Multiplex nested reverse transcription-polymerase chain reaction in a single tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. savastanoi in olive trees. Phytopathology 93:286–292

    PubMed  CAS  Google Scholar 

  • Bertolini E, Peñalver R, Garcia A, Olmos A, Quesada JM, Cambra M, Lopez MM (2003b) Highly sensitive detection of Pseudomonas savastanoi pv. savastanoi in asymptomatic olive plants by nested-PCR in a single closed tube. J Microbiol Methods 52:261–266

    PubMed  CAS  Google Scholar 

  • Besnard G, Baali-Cherif D (2009) Coexistence of diploids and triploids in a Saharan relict olive: evidence from nuclear microsatellite and flow cytometry analices. Comptes Rendus Biologies 332:1115–1120

    PubMed  CAS  Google Scholar 

  • Besnard G, Berville A (2000) Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Life Sci 323:173–181

    CAS  Google Scholar 

  • Besnard G, Berville A (2002) On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163

    PubMed  CAS  Google Scholar 

  • Besnard G, Khadari B, Villemur P, Berville A (2000) Cytoplasmic male sterility in the olive (Olea europaea L.). Theor Appl Genet 100:1018–1024

    Google Scholar 

  • Besnard G, Baradat P, Berville A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258

    CAS  Google Scholar 

  • Besnard G, Baradat P, Chevalier D, Tagmount A, Berville A (2001b) Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genet Resour Crop Evol 48:165–182

    Google Scholar 

  • Besnard G, Breton C, Baradat P, Khadari B, Berville A (2001c) Cultivar identification in olive based on RAPD markers. J Am Soc Hort Sci 126:668–675

    CAS  Google Scholar 

  • Besnard G, Khadari B, Baradat P, Berville A (2002a) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144

    PubMed  CAS  Google Scholar 

  • Besnard G, Khadari B, Baradat P, Berville A (2002b) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104:1353–1361

    PubMed  CAS  Google Scholar 

  • Besnard G, García-Verdugo C, Rubio de Casas R, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea L.): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30

    PubMed  CAS  Google Scholar 

  • Bogani P, Cavalieri D, Petruccelli R, Polsinelli L, Roselli G (1994) Identification of olive tree by using random amplified polymorphic DNA. Acta Hort 356:98–101

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Brito G, Loureiro J, Lopes T, Rodriguez E, Santos C (2008) Genetic characterisation of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genet Resour Crop Evol 55:657–664

    CAS  Google Scholar 

  • Bronzini de Caraffa V, Maury J, Gambotti C, Breton C, Berville A, Giannettini J (2002) Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from Western and Eastern Mediterranean. Theor Appl Genet 104:1209–1216

    PubMed  CAS  Google Scholar 

  • Brousse G (1987) Olive. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world, their breeding and utilization. McGraw Hill Publishing Company, New York, pp 462–474

    Google Scholar 

  • Busconi M, Sebastiani L, Fogher C (2006) Development of SCAR markers for germplasm characterisation in olive tree (Olea europea L.). Mol Breed 17:59–68

    CAS  Google Scholar 

  • Cantini C, Cimato A, Sani G (1999) Morphological evaluation of olive germplasm present in Tuscany region. Euphytica 109:173–181

    Google Scholar 

  • Cantini C, Cimato A, Autino A, Redi A, Cresti M (2008) Assessment of the Tuscan olive germplasm by microsatellite markers reveals genetic identities and different discrimination capacity among and within cultivars. J Am Soc Hort Sci 133:598–604

    Google Scholar 

  • Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307

    PubMed  CAS  Google Scholar 

  • Chevalier A (1948) L’origine de l’olivier cultivéet ses variations. Rev Int Appl Agric Trop 28:1–25

    Google Scholar 

  • Cimato A, Cantini C, Sani G, Marranci M (1993) II Germoplasma dell’Olivo in Toscana. Regione Toscana, Florence

    Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228

    PubMed  CAS  Google Scholar 

  • Civantos D (1999) La olivicultura en el mundo y en España. In: Barranco D, Fernandez-Escobar R, Rallo L (eds) El cultivo del olivo. Mundiprensa, Madrid, pp 19–33

    Google Scholar 

  • Claros GM, Crespillo R, Aguilar ML, Canovas FM (2000) DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.). Euphytica 116:131–142

    CAS  Google Scholar 

  • Consolandi C, Palmieri L, Doveri S, Maestri E, Marmiroli N, Reale S, Lee D, Baldoni L, Tosti N, Severgnini M, De Bellis G, Castiglioni B (2007) Olive variety identification by ligation detection reactionin a universal array format. J Biotechnol 129:565–574

    PubMed  CAS  Google Scholar 

  • Cooper DN, Smith BA, Cooke H, Niemann S, Schmidtke J (1985) An estimate of unique sequence heterozygosity in the human genome. Hum Genet 69:201–205

    PubMed  CAS  Google Scholar 

  • Corrado G, La Mura M, Ambrosino O, Pugliano G, Varricchio P, Rao R (2009) Relationships of Campanian olive cultivars: comparative analysis of molecular and phenotypic data. Genome 52:692–700

    PubMed  CAS  Google Scholar 

  • De Candolle A (1884) Origin of cultivated plants. Kegal Paul Trench & Co., London

    Google Scholar 

  • De la Rosa R, James CM, Tobutt KR (2002) Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol Ecol Notes 2:265–267

    Google Scholar 

  • De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282

    PubMed  Google Scholar 

  • De la Rosa R, James CM, Tobutt KR (2004) Using microsatellite markers to check parentage of some olive progenies. Hort Sci 39:351–354

    Google Scholar 

  • De la Rosa R, Kiran AI, Barranco D, Leon L (2006) Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Aust J Agric Res 57:477–481

    Google Scholar 

  • De la Rosa R, Leon L, Guerrero N, Rallo L, Barranco D (2007) Preliminary results of an olive cultivar trial at high density. Aust J Agric Res 58:392–395

    Google Scholar 

  • Del Rio C, Caballero JM, Garcia-Fernandez MD (2005) Rendimiento graso de la aceituna (Banco de Germoplasma de Córdoba). In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España (Book II: Variabilidad y selección). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 347–356

    Google Scholar 

  • Diaz A, De la Rosa R, Martin A, Rallo P (2006a) Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationships studies. Tree Genet Genomes 2:165–175

    Google Scholar 

  • Diaz A, Martin A, Rallo P, Barranco D, De la Rosa R (2006b) Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J Am Soc Hort Sci 131:250–255

    CAS  Google Scholar 

  • Diaz A, Rallo P, De la Rosa R (2006c) Self- and cross-incompatibility mechanisms: a strategy to ensure a great variability in olive (Olea europaea L.) populations. Olea 25:29–33

    Google Scholar 

  • Diaz A, De la Rosa R, Rallo P, Muñoz-Diez C, Trujillo I, Barranco D, Martín A, Belaj A (2007a) Selections of an olive breeding program identified by microsatellite markers. Crop Sci 47:2317–2322

    Google Scholar 

  • Diaz A, Martin A, Rallo P, De la Rosa R (2007b) Cross-compatibility of the parents as the main factor for successful olive (Olea europaea L.) breeding crosses. J Am Soc Hort Sci 132:1–6

    Google Scholar 

  • Doveri S, Sabino-Gil F, Diaz A, Reale S, Busconi M, da Câmara Machado A, Martin A, Fogher C, Lee D (2008) Standardization of a set of microsatellite markers for use in cultivar identification studies in olive (Olea europaea L.). Sci Hort 116:367–373

    CAS  Google Scholar 

  • Erre P, Chessa I, Muñoz-Diez C, Belaj A, Rallo L, Trujillo I (2010) Genetic diversity and relationships between wild and cultivated olives (Olea europaea L.) in Sardinia as assessed by SSR markers. Genet Resour Crop Evol 57:41–54

    Google Scholar 

  • Faggioli F, Ferretti L, Pasquini G, Barba M (2002) Detection of Strawberry latent ring spot virus in leaves of olive trees in Italy using a one-step RT PCR. J Phytopathol 150:636–639

    CAS  Google Scholar 

  • FAOSTAT (2008) http://faostat.fao.org/.

  • Fernandez-Escobar R, Rallo L (1981) Influencia de la polinización cruzada en el cuajado de frutos de cultivares de olivo (Olea europaea L.). ITEA 45:51–58

    Google Scholar 

  • Fontanazza G, Bartolozzi F, Vergara G (1998) Fs-17. Riv Frutticol 5:61

    Google Scholar 

  • Gallitelli M, Cifarelli RA, Giorio G, Cellini F (2001) Analysis of olive (Olea europaea L.) cultivars using AFLP markers and RAPD markers. Plant and animal genome IX conference. San Diego, California, p 325

    Google Scholar 

  • Gemas VJV, Rijo-Johansen MJ, Tenreiro R, Fevreiro P (2000) Inter- and intra-varietal analysis of three Olea europaea L. cultivars using the RAPD technique. J Hort Sci Biotechnol 75:319–321

    Google Scholar 

  • Gemas VJV, Almadanim MC, Tenreiro R, Martins A, Fevereiro P (2004) Genetic diversity in the Olive tree (Olea europaea L. subsp europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Resour Crop Evol 51:501–511

    CAS  Google Scholar 

  • Grati-Kamoun N, Mahmoud FL, Rebai A, Gargouri A, Panaud O, Saar A (2006) Genetic diversity of Tunisian olive tree (Olea europaea L.) cultivars assessed by AFLP markers. Genet Resour Crop Evol 53:265–275

    CAS  Google Scholar 

  • Grieco F, Alkowni R, Saponari M, Pantaleo V, Savino V, Martelli GP (2002) Molecular detection of olive-infecting viruses. Proc Fourth Intl Symp Olive Growing, Acta Hort (ISHS) 586:737–740

    CAS  Google Scholar 

  • Gugerli F, Sperisen C, Buchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) population suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263

    PubMed  CAS  Google Scholar 

  • Hamada H, Petrini MG, Kakunaga T (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci U S A 79:6465–6469

    PubMed  CAS  Google Scholar 

  • Hannachi H, Breton C, Msallem M, Ben El Hadj S, El GM, Berville A (2008) Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: a case study in Tunisia. Sci Hort 116:280–290

    CAS  Google Scholar 

  • Hassani D, Buonaurio R, Tombesi A (2003) Response of some olive cultivars, hybrid and open pollinated seedlings to Pseudomonas savastanoi pv. savastanoi. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris, CE, Murillo J, Schaad NW, Stead DE, Surico G (eds) 6th International conference on Pseudomonas syringae and related pathogens: biology and genetics, Maratea

    Google Scholar 

  • Hernandez P, De la Rosa R, Dorado G, Martin A (2001a) Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: applications in olive germplasm evaluation and mapping. Theor Appl Genet 103:788–791

    CAS  Google Scholar 

  • Hernandez P, De la Rosa R, Rallo L, Martin A, Dorado G (2001b) First evidence of a retrotransposon-like element in olive (Olea europaea): implications in plant variety identification by SCAR-marker development. Theor Appl Genet 102:1082–1087

    CAS  Google Scholar 

  • Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequences repeat (ISSR). Mol Ecol 9:857–868

    PubMed  CAS  Google Scholar 

  • Heywood HU (1978) Flowering plants in the world. Oxford University Press, London

    Google Scholar 

  • Hilali S, El Antari A (1994) Varietal polymorphism in fruit-bearing olive cultivars in Marrakesh: a study. Olivae 50:45–47

    Google Scholar 

  • International Olive Council (2009) http://www.internationaloliveoil.org/downloads/production1_ang.PDF

  • Khadari B, Berville A, Dore C, Dosba F, Baril C (2001a) Genetic diversity of Moroccan cultivated olive using RAPD markers. Acta Hort 546:439–442

    CAS  Google Scholar 

  • Khadari B, Breton C, Besnard G, Roger JP, Berville A, Dore C, Dosba F, Baril C (2001b) Molecular characterization and genetic structure of olive germplasm collection in Conservatoire Botanique National Mediterranean de Porquerolles using nuclear RAPD markers and RFLP of mitochondrial DNA. Acta Hort 546:433–437

    CAS  Google Scholar 

  • Kwok PY, Deng Q, Zakeri H, Taylor SL, Nickerson DA (1996) Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genetics 31:123–126

    CAS  Google Scholar 

  • La Mantia M, Lain O, Caruso T, Testolin R (2005) SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm. J Hort Sci Biotechnol 80:628–632

    Google Scholar 

  • Lambardi M, Amorosi S, Caricato G, Benelli C, Branca C, Rugini E (1999) Microprojectile-DNAdelivery in somatic embryos of olive (Olea europaea L.). Acta Hort 474:505–509

    CAS  Google Scholar 

  • Lanza B, Marsilio V, Martinelli N (1996) Olive pollen ultrastructure: characterization of exine pattern through image analysis scanning electron microscopy (IA-SEM). Sci Hort 65:283–294

    Google Scholar 

  • Lavee S (1986) Olive. In: Monselise SP (ed) Handbook of fruit set and development. CRC, Boca Raton, FL, pp 261–276

    Google Scholar 

  • Lavee S (1994) Por qué la necesidad de nuevas variedades de olivos? Fruticultura Profesional 62:29–37

    Google Scholar 

  • Lavee S, Harshemesh H, Haskal A, Avidan B, Ogrodovich A, Avidan N, Trapero A (1999) ‘Maalot’ a new cultivar for oil extraction resistant to Spilocaea oleagina (Cast.). Acta Hort 474:125–128

    Google Scholar 

  • Leitão F (1988) Contributo para o conhecimiento de cultivares de (Olea europaea L.) que sobre o aspecto de caracterizaçao, quer da productividade, determinante do seu valor económico. Estaçao Agronómica Nacional, INIA, Oeiras

    Google Scholar 

  • Leon L, De la Rosa R, Barranco D, Rallo L (2007a) Breeding for early bearing in olive. Hort Sci 42:499–502

    Google Scholar 

  • Leon L, De la Rosa R, Rallo L, Guerrero N, Barranco D (2007b) Influence of spacing on the initial production of hedgerow ‘Arbequina’ olive orchards. Span J Agric Res 5:554–556

    Google Scholar 

  • Lopez-Escudero FJ, Del Rio C, Caballero JM, Blanco-Lopez MA (2004) Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur J Plant Pathol 110:79–85

    Google Scholar 

  • Loukas M, Krimbas CB (1983) History of olive cultivars based on their genetic distances. J Hort Sci 58:121–127

    Google Scholar 

  • Luigi M, Manglli A, Thomaj F, Buonaurio R, Barba M, Faggioli F (2009) Phytosanitary evaluation of olive germplasm in Albania. Phytopathol Mediterr 48:280–284

    Google Scholar 

  • Lumaret R, Amane M, Ouazzani N, Baldoni L, Debain C (2000) Chloroplast DNA variation in the cultivated and wild olive taxa of the genus Olea L. Theor Appl Genet 101:547–553

    CAS  Google Scholar 

  • Massei G, Hartley SE (2000) Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia 122:225–231

    Google Scholar 

  • Mekuria GT, Collins GG, Sedgley M (1999) Genetic variability between different accessions of some common commercial olive cultivars. J Hort Sci Biotechnol 74:309–314

    Google Scholar 

  • Mekuria GT, Sedgley M, Collins G, Lavee S (2002) Development of a sequence-tagged site for the RAPD marker linked to leaf spot resistance in olive. J Am Soc Hort Sci 127:673–676

    CAS  Google Scholar 

  • Mencuccini M, Micheli M, Angiolillo A, Baldoni L (1999) Genetic transformation of olive (Olea europaea L.) using Agrobacterium tumefaciens. Acta Hort 474:515–519

    Google Scholar 

  • Mercado-Blanco J, Collado-Romero M, Parrilla-Araujo S, Jimenez-Diaz RM (2003) Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiol Mol Plant Pathol 63:91–105

    CAS  Google Scholar 

  • Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG (2000) The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in-situ hybridisation of highly repeated DNA sequences. Chromosome Res 8:615–619

    PubMed  CAS  Google Scholar 

  • Moazzo GP (1994) Les plantes d’Homère et de quelques autres poètes de l’Antiquité. V. L’olivier (Elaie). Annales du Musei Goulandris 9:185–223

    Google Scholar 

  • Montemurro C, Simeone R, Pasqualone A, Ferrara E, Blanco A (2005) Genetic relationships and cultivar identification among 112 olive accessions using AFLP and SSR markers. J Hort Sci Biotechnol 80:105–110

    CAS  Google Scholar 

  • Montemurro C, Simeone R, Blanco A, Saponari M, Bottalico G, Savino V, Martelli GP, Pasqualone A (2008) Sanitary selection and molecular characterization of olive cultivars grown in Apulia. Proc Fifth Intl Symp Olive Growing 791:603–609

    Google Scholar 

  • Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors. Theor Appl Genet 111:1174–1182

    PubMed  CAS  Google Scholar 

  • Moreno-Alias I, Leon L, De la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23:181–187

    Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260

    PubMed  CAS  Google Scholar 

  • Olea databases (2008) http://www.oleadb.it/.

  • Ouazzani N, Lumaret R, Villemur P, Di Guito F (1993) Leaf alloenzyme variation in cultivated and wild olive trees. J Hered 84:34–42

    CAS  Google Scholar 

  • Ouazzani N, Lumaret R, Villemur P (1995) Apport du polymorphisme alloenzymatique à l’identification variétale de l’Olivier (Olea europaea L.). Agronomie 15:1–7

    Google Scholar 

  • Ouazzani N, Lumaret R, Villemur P (1996) Genetic variation in the olive tree (Olea europaea L.) cultivated in Morocco. Euphytica 91:9–20

    Google Scholar 

  • Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V, Aksoy U, Hepaksoy S, Chamoun R, Talhook SN, Metzidakis I, Hatzopoulos P, Kalaitzis P (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor Appl Genet 110:1169–1176

    PubMed  CAS  Google Scholar 

  • Pafundo S, Agrimonti C, Maestri E, Marmiroli N (2007) Applicability of SCAR markers to food genomics: Olive oil traceability. J Agric Food Chem 55:6052–6059

    PubMed  CAS  Google Scholar 

  • Paran I, Michelmore RM (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:958–993

    Google Scholar 

  • Peñalver R, Garcia A, Ferrer A, Bertolini E, Quesada JM, Salcedo CI, Piquer J, Perez-Panades J, Carbonell EA, Del Rio C, Caballero JM, Lopez MM (2006) Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. Phytopathology 96:313–319

    Google Scholar 

  • Perez-Barranco G, Torreblanca R, Padilla IMG, Sanchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tiss Organ Cult 97:243–251

    CAS  Google Scholar 

  • Pontikis CA, Loukas M, Kousounis G (1980) The use of biochemical markers to distinguish olive cultivars. J Hort Sci 55:333–343

    CAS  Google Scholar 

  • Prevost G, Bartolini G, Messeri C (1993) Italian olive cultivars and their synonyms. Menegazzo edition, Lucca

    Google Scholar 

  • Pritsa TS, Voyiatzis DG, Voyiatzi CJ, Sotiriou MS (2003) Evaluation of vegetative growth traits and their relation to time to first flowering of olive seedlings. Aust J Agric Res 54:371–376

    Google Scholar 

  • Rallo L (1995) Selección y mejora genética del olivo en España. Olivae 59:46–53

    Google Scholar 

  • Rallo P, Dorado G, Martin A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    CAS  Google Scholar 

  • Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martin A (2003) Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet 107:940–946

    PubMed  CAS  Google Scholar 

  • Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (2005) Las variedades de olivo cultivadas en España. Consejería de Agricultura y Pesca, Ministerio de Agricultura, Pesca y Alimentación. Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Rallo L, Barranco D, De la Rosa R, Leon L (2008a) ‘Chiquitita’ olive. Hort Sci 43:529–531

    Google Scholar 

  • Rallo P, Jimenez R, Ordovas J, Suarez MP (2008b) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agric Res 59:933–940

    Google Scholar 

  • Rao R, La Mura M, Corrado G, Ambrosino O, Foroni I, Perri E, Pugliano G (2009) Molecular diversity and genetic relationships of southern Italian olive cultivars as depicted by AFLP and morphological traits. J Hort Sci Biotechnol 84:261–266

    CAS  Google Scholar 

  • Reale S, Doveri S, Diaz A, Lucentini L, Angiolillo A, Pilla F, Martin A, Donini P, Lee D (2006) SNP-based assessment of genetic relationships among Olea europaea L. cultivars. Genome 49:1193–1205

    PubMed  CAS  Google Scholar 

  • Rekik I, Salimonti A, Kamoun NG, Muzzalupo I, Lepais O, Gerber S, Perri E, Rebai A (2008) Characterization and identification of Tunisian olive tree varieties by microsatellite markers. Hort Sci 43:1371–1376

    Google Scholar 

  • Roselli G, Donini B (1982) Briscola, nuova cultivar di olivo a sviluppo comatto. Riv Ortoflorofrutt It 66:103–104

    Google Scholar 

  • Roselli G, Petruccelli R, Polsinelli L, Cavalieri D (2002) Variability in five Tuscan olive cultivars. J Genet Breed 56:51–60

    CAS  Google Scholar 

  • Rotondi A, Magli M, Ricciolini M, Baldoni L (2003) Morphological and molecular analyses of the characterization of a group of Italian olive cultivars. Euphytica 132:129–137

    CAS  Google Scholar 

  • Rugini E (1986) Olive. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Springer, New York, pp 253–267

    Google Scholar 

  • Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop. In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol 10. Springer, New York, pp 593–641

    Google Scholar 

  • Rugini E, Lavee S (1992) Olive. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB, Wallingford, pp 371–382

    Google Scholar 

  • Sabino-Gil F, Busconi M, Da Câmara Machado A, Fogher C (2006) Development and characterization of microsatellite loci from Olea europaea. Mol Ecol Notes 6:1275–1277

    Google Scholar 

  • Santos Antunes AF, Mohedano A, Trujillo I, Rallo L, Metzidakis IT, Voyiatzis DG (1999) Influence of the genitors on the flowering of olive seedlings under forced growth. Acta Hort 474:103–105

    Google Scholar 

  • Sanz-Cortes F, Parfitt DE, Romero C, Struss D, Llacer G, Badenes ML (2003) Intraspecific olive diversity assessed with AFLP. Plant Breed 122:173–177

    Google Scholar 

  • Sanz-Cotes F, Badenes ML, Paz S, Iñiguez A, Llacer G (2001) Molecular characterization of olive cultivars using RAPD markers. J Am Soc Hort Sci 126:7–12

    Google Scholar 

  • Sarri V, Baldoni L, Porceddu A, Cultrera NGM, Contento A, Frediani M, Belaj A, Trujillo I, Cionini PG (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49:1606–1615

    PubMed  CAS  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnosis. Can J Plant Pathol 24:250–258

    CAS  Google Scholar 

  • Sefc KM, Lopes MS, Mendonça D, Rodrigues Dos Santos M, da Câmara L, Machado M, da Câmara Machado A (2000) Identification of SSR loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173

    PubMed  CAS  Google Scholar 

  • Sesli M, Yegenoglu ED (2009) Standardization of RAPD assay for genetic analysis of olive. Afr J Biotechnol 8:6772–6776

    CAS  Google Scholar 

  • Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in Western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88

    Google Scholar 

  • Soltis DE, Soltis PS (1989) Isozymes in Plant Biology. Dioscorides Press, Portland

    Google Scholar 

  • Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M (2002) Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933

    PubMed  CAS  Google Scholar 

  • Taylor H (1945) Cyto-taxonomy and phylogeny of the Oleaceae. Brittonia 5:337–367

    Google Scholar 

  • Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636

    PubMed  CAS  Google Scholar 

  • Tous J, Romero A (1993) Variedades del olivo. Fundación “La Caixa”, Barcelona

    Google Scholar 

  • Tous J, Romero A (2005) Rendimiento graso de la aceituna (Banco de Germoplasma de Cataluña). In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España (Book II: Variabilidad y selección). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 347–356

    Google Scholar 

  • Tous J, Romero A, Diaz I (2005) Composición del aceite (Banco de Germoplasma de Cataluña). In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España (Book II: Variabilidad y selección). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 357–372

    Google Scholar 

  • Trapero A, Lopez-Doncel LM (2005) Resistencia y susceptibilidad al repilo. In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Variedades I (eds) Trujillo de olivo en España (Book II: Variabilidad y selección). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 321–328

    Google Scholar 

  • Trujillo I, Rallo L, Carbonell EA, Asins MJ (1990) Isoenzymatic variability of olive cultivars according to their origin. Acta Hort 286:137–140

    Google Scholar 

  • Trujillo I, Rallo L, Arus P (1995) Identifying olive cultivars by isozyme analysis. J Am Soc Hort Sci 120:318–324

    CAS  Google Scholar 

  • Uceda M, Beltran G, Jimenez A (2005) Composición del aceite (Banco de Germoplasma de Córdoba). In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España (Book II: Variabilidad y selección). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 357–372

    Google Scholar 

  • Varanda C, Cardoso JMS, Felix MD, Oliveira S, Clara MI (2010) Multiplex RT-PCR for detection and identification of three necroviruses that infect olive trees. Eur J Plant Pathol 127:161–164

    CAS  Google Scholar 

  • Vergari G, Patumi M, Fontanazza G (1996) Use of RAPDs markers in the characterisation of olive germplasm. Olivae 60:19–22

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijtens A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    PubMed  CAS  Google Scholar 

  • Wiesman Z, Avidan N, Lavee S, Quebedeaux B (1998) Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. J Am Soc Hort Sci 123:837–841

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Wu S-B, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35

    PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (1994) Domestication of Plants in the Old World. Clarendon, Oxford

    Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Díaz, A. (2012). Olive. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0356-2_11

Download citation

Publish with us

Policies and ethics