Skip to main content

Abstract

Castor (Ricinus communis L.) is a very ancient oilseed crop cultivated because of the high oil content of the seeds, which ranges between 42 and 58%. The oil contains a high proportion (84–90%) of ricinoleic acid, a monounsaturated hydroxy fatty acid with multiple industrial applications such as paints and varnishes, cosmetics, polymers, biolubricants and biofuels. This chapter summarizes breeding objectives and crop improvement methods and techniques used to breed cultivars in castor. The most important breeding objectives are related to plant architecture and adaptation to mechanized harvest, development of male sterility systems for exploitation of heterosis, agronomic traits associated with high yield and yield stability, adaptation to specific environments, resistance to biotic and abiotic stresses, high seed oil content, diversification of seed oil quality and elimination of toxic compounds of the seeds. Despite being a highly cross-pollinated species, castor shows little inbreeding depression, which determines that breeding methods for self-pollinated crops together with common methods for cross-pollinated species such as recurrent selection are suitable for castor breeding. Additionally, hybrid breeding as a means of exploitation of heterosis has been an important aspect of cultivar development. Major landmarks in castor breeding have been the identification of dwarf-internode mutants, male sterility systems that facilitated the development of commercial hybrids, the identification of strains with high oleic acid content and low content of toxic compounds, and the development of efficient regeneration and transformation protocols. In the near future, the increasing demand for the use of vegetable oils in non-food applications such as biofuels and biolubricants is expected to stimulate the development of castor as an industrial crop that do not compete in the food markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboelsoud NH (2010) Herbal medicine in ancient Egypt. J Med Plant Res 42:82–86

    Google Scholar 

  • Ahn YJ, Vang L, McKeon TA, Chen GQ (2007) High-frequency plant regeneration through adventitious shoot formation in castor (Ricinus communis L.). In Vitro Cell Dev Biol Plant 43:9–15

    CAS  Google Scholar 

  • Alam I, Sharmin SA, Mondal SC, Alam MJ, Khalekuzzaman M, Anisuzzaman M, Alam MF (2010) In vitro micropropagation through cotyledonary node culture of castor bean (Ricinus communis L.). Aust J Crop Sci 4:81–84

    CAS  Google Scholar 

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Res Crop Evol 55:365–378

    CAS  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Anjani K (2005) Purple-coloured castor (Ricinus communis L.). A rare multiple resistant morphotype. Curr Sci 88:215–216

    Google Scholar 

  • Anjani K (2010) Extra-early maturing germplasm for utilization in castor improvement. Ind Crop Prod 31:139–144

    Google Scholar 

  • Anjani K, Raoof MA, Ashota Vardhana Reddy P, Rao CH (2002) Sources of resistance to major castor (Ricinus communis L.) diseases. Plant Genet Res Newslett 137:46–48

    Google Scholar 

  • Anjani K, Pallavi M, Sudhakara Babu SN (2010) Biochemical basis of resistance to leafminer in castor (Ricinus communis L.). Ind Crop Prod 31:192–196

    CAS  Google Scholar 

  • Ankineedu G, Sharma KD, Kulkarni LG (1968) Effect of fast neutrons and gamma rays on castor. Ind J Genet Plant Breed 28:31–39

    Google Scholar 

  • Ashri A (1994) Oil crops: status and outlook. In: Mutation breeding of oilseed crops. Joint FAO/IAEA Division, Vienna, pp 7–12

    Google Scholar 

  • Athma P, Reddy TP (1983) Efficiency of callus initiation and direct regeneration from different explants of castor (Ricinus communis L.). Curr Sci 52:256–257

    Google Scholar 

  • Atsmon D (1989) Castor. In: Downey RK, Röbbelen G, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, NY, pp 438–447

    Google Scholar 

  • Auld DL, Pinkerton SD, Boroda E, Lombard KA, Murphy CK, Kenworthy KE, Becker WD, Rolfe RD, Ghethie V (2003) Registration of TTU-LRC castor germplasm with reduced levels of ricin and RCA120. Crop Sci 43:746–747

    Google Scholar 

  • Auld DI, Zanotto MD, McKeon T, Morris JB (2009) Castor. In: Vollmann J, Rajcan I (eds) Oil crop breeding. Springer, New York, NY, pp 317–332

    Google Scholar 

  • Babita M, Maheswari M, Rao LM, Shanker AK, Gangadhar Rao D (2010) Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.). Environ Exp Bot 69:243–249

    Google Scholar 

  • Bajay MM, Pinheiro JB, Araújo-Batista CE, Medeiros-Nobrega MB, Zucchi MI (2009) Development and characterization of microsatellite markers for castor (Ricinus communis L.), an important oleaginous species for biodiesel production. Conserv Genet Res 1:237–239

    Google Scholar 

  • Baldanzi M, Pugliesi C (1998) Selection for non-branching in castor, Ricinus communis L. Plant Breed 117:392–397

    Google Scholar 

  • Balint GA (1974) Ricin: the toxic protein of castor oil seeds. Toxicology 2:77–102

    PubMed  CAS  Google Scholar 

  • Banzatto NV, Rocha JLV, Canecchio Filho V (1963) Transferencia do caráter indeiscencia para o cultivar IAC-38 de mamoneira. Bragantia 22:291–298

    Google Scholar 

  • Banzatto NV, Canecchio Filho V, Savy Filho A (1977) Guarani. Novo cultivar de mamoneira (Ricinus communis L.). Boletim técnico n. 66. Campinas: Instituto Agronômico

    Google Scholar 

  • Barteneva RV (1986) Pests. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 284–286

    Google Scholar 

  • Bhardwag HL, Mohamed AI, Webber CL, Lovell GR (1996) Evaluation of castor germplasm for agronomic and oil characteristics. In: Janick J (ed) Progress in new crops. ASHS, Alexandria, VA, pp 342–346

    Google Scholar 

  • Bilapate GG (1978) Life table for the castor capsule borer, Dichocrocis punctiferalis Gn. on different hosts. Proc Ind Acad Sci 87B:217–220

    Google Scholar 

  • Blagodyr AP (1986) Tasks of seed production work and requirements for seeds. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 185–190

    Google Scholar 

  • Bonjean A (1991) Castor cultivation for chemical applications. Galileo-ONIDOL, Les Lilas

    Google Scholar 

  • Brigham RD (1965) Delayed germination and seedling emergence of castorbean (Ricinus communis L.) open-pollinated lines and hybrids as influenced by genotype and environment. Crop Sci 5:79–83

    Google Scholar 

  • Brigham RD (1967) Natural outcrossing in dwarf-internode castor Ricinus communis L. Crop Sci 7:353–355

    Google Scholar 

  • Brigham RD (1970a) Registration of castor variety Dawn. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1970b) Registration of castor variety Hale. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1970c) Registration of castor variety Lynn. Crop Sci 10:457

    Google Scholar 

  • Brigham RD (1973) Registration of T55001 castor composite germplasm. Crop Sci 13:398

    Google Scholar 

  • Brigham RD (1980) Castor. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, WI, pp 235–247

    Google Scholar 

  • Brigham RD (1993) Castor: return of a crop. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 380–383

    Google Scholar 

  • Brigham RD, Minton EB (1969) Resistance of dwarf-internode castor (Ricinus communis L.) to verticillium wilt. Plant Dis Rptr 53:262–266

    Google Scholar 

  • Bukhatchenko SL (1986) Ricinine: the alkaloid of castor oil. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 81–85

    Google Scholar 

  • Calvert OH, Thomas CA, Van Horn DL (1953) A bacterial leaf spot disease of castor new for the United States. Plant Dis Rptr 37:447

    Google Scholar 

  • Carvalho do Amaral JG (2003) Seleção de plantas individual com testes de progênies em mamona (Ricinus commnis L.) cv. Guarani. PhD Dissertation, College of Agronomy Sciences, São Paulo State University, Botucatu

    Google Scholar 

  • Chakrabarty SK (1997) Combining ability and heterosis studies in castor (Ricinus communis L.). J Oilseeds Res 14:182–188

    Google Scholar 

  • Chan AP, Redman J, Allan G, Keim P, Fraser C, Ravel J, Rabinowicz PD (2006) Whole genome analysis of castor bean (Ricinus communis). Abstracts: plant and animal genomes XIV Conference, pp 14. http://www.intl-pag.org/14/abstracts/PAG14_P32.html. Accessed 1 July 2010

  • Chattopadhyay C, Reddy MCM (1995) Wilt complex of castor (Ricinus communis): Role of reniform (Rotylenchulus reniformis Linford & Oliveira) nematode. J Oilseeds Res 12:203–207

    Google Scholar 

  • Chauhan SVS, Singh KP, Saxena BK (1992) Gamma-ray induced female mutation in castor. Ind J Genet Breed 52:26–28

    Google Scholar 

  • Chen GQ, He X, Liao LP, McKeon TA (2004) 2 S albumin gene expression in castor plant (Ricinus communis L.). J Am Oil Chem Soc 81:867–872

    CAS  Google Scholar 

  • Chen GQ, Ahn YJ, Vang L (2007) Engineering new crops for safe castor oil production. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and sustainable agriculture. 2006 and beyond. Springer, Dordrecht, pp 227–230

    Google Scholar 

  • Claassen CE, Hoffman A (1950) The inheritance of the pistillate character in castors and its possible utilization in the production of commercial hybrid seed. Agron J 42:79–82

    Google Scholar 

  • Conceiçaõ MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ, Souza AG (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sust Energy Rev 11:964–975

    Google Scholar 

  • Culp TW (1966) Inheritance of capsule drop resistance and pedicel length in castorbeans (Ricinus communis L.). Crop Sci 6:280–283

    Google Scholar 

  • Dange SRS (2003) Wilt of castor. An overview. J Mycol Plant Pathol 33:333–339

    Google Scholar 

  • Dange SRS, Desai AG, Patel SI (2005) Diseases of castor. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus, New Delhi, pp 211–235

    Google Scholar 

  • Desai AG, Dange SRS, Pathak HC (2001) Genetics of resistance to wilt in castor caused by Fusarium oxysporum f.sp. ricini Nanda & Prasad. J Mycol Plant Pathol 31:322–326

    Google Scholar 

  • Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J (2006) A phloem-enriched cDNA library from Ricinus: insights into phloem function. J Exp Bot 57:3183–3193

    PubMed  CAS  Google Scholar 

  • Domingo WE (1944) Amount of natural out-crossing in the castor oil plant. J Am Soc Agron 36:360–361

    Google Scholar 

  • Donini B, Kawai T, Micke A (1984) Spectrum of mutant characters utilized in developing improved cultivars. In: Selection in mutation breeding: Proceedings of a consultants meeting, Joint FAO/IAEA Division, Vienna, pp 7–31

    Google Scholar 

  • Downey RK, Harvey BL (1963) Methods of breeding for oil quality in rape. Can J Plant Sci 43:271–275

    CAS  Google Scholar 

  • D’Souza SF, Reddy KS, Badigannavar AM, Manjaya JG, Jambhulkar SJ (2009) Mutation breeding in oilseeds and grain legumes in India: accomplishments and socio-economic impact. In: Shu QY (ed) Induced plant mutations in the genomic era. Joint FAO/IAEA Division, Vienna, pp 55–57

    Google Scholar 

  • EMBRAPA (2004) BRS Paraguaçu e BRS Nordestina. Tecnologia Embrapa para o semi-árido Brasileiro. Embrapa, Campina Grande, Brazil. http://www.infoteca.cnptia.embrapa.br/bitstream/CNPA/19943/1/FOLDER_brs_paraguassu.pdf. Accessed 1 July 2010

  • FAOSTAT (2009) Data base of the Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org. Accessed 1 July 2010

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:3

    Google Scholar 

  • Gajera BB, Kumar N, Singh AS, Punvar BS, Ravikiran R, Subhash N, Jadeja GC (2010) Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind Crop Prod 32(3):491–498. doi:10.1016/j.indcrop.2010.06.021

    CAS  Google Scholar 

  • Ganesh Kumari K, Ganesan M, Jayabalan N (2008) Somatic organogenesis and plant regeneration in Ricinus communis. Biol Plant 52:17–25

    Google Scholar 

  • George WLJ, Shifriss O (1967) Interspersed sexuality in Ricinus. Genetics 57:347–356

    PubMed  CAS  Google Scholar 

  • Giriraj K, Mensinkai SW, Sindagi SS (1974) Components of genetic variation for yield and its attributes in 6x6 diallel crosses of castor (Ricinus communis L.). Ind J Agric Sci 44:132–136

    Google Scholar 

  • Golakia PR, Monpara BA, Posshiya VK (2008) Heterosis for yield determinants over environments in castor (Ricinus communis L.). J Oilseeds Res 25:25–28

    Google Scholar 

  • Gomes de Albuquerque W, Soares-Severino L, Macêdo-Beltrão NE, Oliveira-Freire MA, Milani M (2008) Variação no percentual de tegumento em relação ao peso da semente de dez genótipos de mamoneira. III Congresso Brasileiro de Mamona. http://www.cnpa.embrapa.br/produtos/mamona/publicacoes/cbm3/trabalhos/. Accessed 1 July 2010

  • Grezes-Besset B, Lucante N, Kelechian V, Dargent R, Muller H (1996) Evaluation of castor bean resistance to sclerotial wilt disease caused by Macrophomina phaseolina. Plant Dis 80:842–846

    Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vivo protein synthesis by plant ribosomes. Proc Natl Acad Sci U S A 79:5935–5938

    PubMed  CAS  Google Scholar 

  • Holfelder MGAH, Steck M, Komor E, Seifert KH (1998) Ricinine in phloem sap of Ricinus communis. Phytochemistry 47:1461–1464

    CAS  Google Scholar 

  • Hooks JA, Williams JH, Gardner CO (1971) Estimates of heterosis from a diallel cross in castors, Ricinus communis L. Crop Sci 11:651–655

    Google Scholar 

  • Jayaraj S (1967) Studies on the resistance of castor plants (Ricinus communis L.) to the leafhopper, Empoasca flavescens (F.) (Homoptera, Jassidae). Z Angew Entomol 59:117–126

    Google Scholar 

  • Khvostova IV (1986) Ricin: the toxic protein of seeds. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 85–92

    Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: Optimizing fatty acid ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    CAS  Google Scholar 

  • Koutroubas SD, Papakosta DK, Doitsinis A (2000) Water requirements for castor oil crop (Ricinus communis L.) in a Mediterranean climate. J Agron Crop Sci 184:33–41

    Google Scholar 

  • Krug CA, Teixeira Mendes P, Ferreira de Sousa O (1943) Melhoramento da mamoneira (R. communis L.). III: Primeira série de ensaios de variedades (1937/38, 1938/39). Bragantia 3:85–122

    Google Scholar 

  • Kulkarni LG, Ankineedu G (1966) Isolation of pistillate lines in castor for exploitation of hybrid vigour. Ind J Genet Plant Breed 26:363–365

    Google Scholar 

  • Laureti D (1987) Valutazione dell’attitudine generale alla combinazione in Ricinus communis L. Rivista di Agronomia 21:50–53

    Google Scholar 

  • Laureti D, Brighan RD (1987) Genetica e miglioramento del ricino. Agricoltura Ricerca 89:11–22

    Google Scholar 

  • Laureti D, Fedeli AM, Scarpa GM, Marra GF (1998) Performance of castor (Ricinus communis L.) cultivars in Italy. Ind Crop Prod 7:91–93

    Google Scholar 

  • Lavanya C, Chakrabarthy SK, Ramachandram M, Rao CH, Raoof MA (2003) Development of wilt resistant pistillate lines in castor through mutation breeding. J Oilseed Res 20:48–50

    Google Scholar 

  • Lavanya C, Rao PVR, Gopinath VV (2006) Studies on combining ability and heterosis of yield and yield components in castor Ricinus communis L. hybrids. J Oilseeds Res 23:174–177

    Google Scholar 

  • Lowery C, Auld D, Rolfe R, McKeon T, Goodrum J (2007) Barriers to commercialization of a castor cultivar with reduced concentration of ricin. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS, Alexandria, VA, pp 97–104

    Google Scholar 

  • Lu C, Wallis JG, Browse J (2007) An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library. BMC Plant Biol 7:42

    PubMed  Google Scholar 

  • Malathi B, Ramesh S, Venkateswara Rao K, Dashavantha Reddi V (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    CAS  Google Scholar 

  • Manniche L (1989) An ancient Egyptian herbal. The University of Texas Press, Austin, TX

    Google Scholar 

  • McKeon TA, Chen GQ, Lin JT (2000) Biochemical aspects of castor oil biosynthesis. Biochem Soc Trans 28:972–974

    PubMed  CAS  Google Scholar 

  • Moses GJ, Reddy RR (1989) Gray rot of castor in Andhra Pradesh. J Res APAU 17:74–75

    Google Scholar 

  • Moshkin VA (1986a) History and Origin of castor. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 6–10

    Google Scholar 

  • Moshkin VA (1986b) Direction of breeding and criteria of selection. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 117–125

    Google Scholar 

  • Moshkin VA (1986c) Development of initial material. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 132–146

    Google Scholar 

  • Moshkin VA (1986d) Methods and achievements in the breeding of varieties. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 125–132

    Google Scholar 

  • Moshkin VA, Dvoryadkina AG (1986) Cytology and genetics of qualitative characteristics. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 93–103

    Google Scholar 

  • Myczkowski ML, Zanotto MD, Carvalho do Amaral JG, Manebe-Kiihl TA, Jesus CR (2006) Taxa de cruzamentos naturais na cultivar Guarani Comun de mamona (Ricinus communis L.). II Congresso Brasileiro de Mamona. http://www.cnpa.embrapa.br/produtos/mamona/publicacoes/trabalhos_cbm2/. Accessed 1 July 2010

  • Okoh JO, Ojo AA, Vange T (2007) Combining ability and heterosis of oil content in six accessions of castor at Makurdi. Nat Sci 5:18–23

    Google Scholar 

  • Oliveira IJ, Zanotto MD (2008) Eficiência da seleção recorrente para redução da estatura de plantas em mamoneira (Ricinus communis L.). Ciênc Agrotec 32:1107–1112

    Google Scholar 

  • Peat JE (1928) Genetic studies in Ricinus communis L. J Genet 19:373–389

    Google Scholar 

  • Pinkerton SD, Rolfe R, Auld DL, Ghetie V, Lauterbach F (1999) Selection for divergent concentrations of ricin and Ricinus communis agglutinin. Crop Sci 39:353–357

    CAS  Google Scholar 

  • Popova GM, Moshkin VA (1986) Botanical classification. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 11–27

    Google Scholar 

  • Prasad N, Bhatnagar A (1981) Evaluation of resistant varieties of castor to wilt pathogen. J Mycol Plant Pathol 11:137–138

    Google Scholar 

  • Raghavaiah CV, Lavanya C, Kumaran S, Royal TJJ (2006) Screening castor (Ricinus communis) genotypes for salinity tolerance in terms of germination, growth and plant ion composition. Indian J Agric Sci 76:196–199

    CAS  Google Scholar 

  • Rojas-Barros P (2001) Estudios genéticos de androesterilidad, contenido en aceite y ácido ricinoleico en ricino (Ricinus communis L.). PhD Thesis, University of Córdoba, Spain

    Google Scholar 

  • Rojas-Barros P, De Haro A, Fernández-Martínez JM (2004) Isolation of a natural mutant in castor bean (Ricinus communis L.) with high oleic/low ricinoleic acid content. Crop Sci 44:76–80

    CAS  Google Scholar 

  • Rojas-Barros P, De Haro A, Fernández-Martínez JM (2005) Inheritance of high oleic/low ricinoleic acid content in the seed oil of castor mutant OLE-1. Crop Sci 45:157–162

    CAS  Google Scholar 

  • Sarwar G, Chaudhry MB (2008) Evaluation of castor (Ricinus communis L.) induced mutants for possible selection in the improvement of seed yield. Spanish J Agric Res 6:629–634

    Google Scholar 

  • Sathaiah V, Reddy TP (1985) Seed protein profiles of castor (Ricinus communis L.) and some Jatropha species. Genet Agr 39:35–43

    CAS  Google Scholar 

  • Sathaiah V, Reddy TP (1986) Peroxidase isozyme patterns of parents and hybrids in a 9x9 diallel of castor (Ricinus communis L.). In: Manna GK, Sinha U (eds) Perspectives in cytology and genetics, vol 5. Rashtravani, Mayapuri, pp 713–721

    Google Scholar 

  • Savy Filho A (2005) Melhoramento de mamona. In: Borém A (ed) Melhoramento de Espécies Cultivadas. Universidade Federal de Viçosa, Viçosa, Brazil, pp 385–407

    Google Scholar 

  • Savy Filho A (2007a) Mamona (Ricinus communis). Desenvolvimento de tecnologia de produção. São Paulo, Brazil: Péter Murányi Foundation. http://www.fundacaopetermuranyi.org.br/downloads/2007resumo.pdf. Accessed 1 July 2010

  • Savy Filho A, Amorim EP, Ramos NP, Mello-Martins AL, Cavichioli JC (2007) IAC-2028: Nova cultivar de mamona. Pesq Agrop Bras 42:449–452

    Google Scholar 

  • Savy Filho A, Banzatto NV, Ferraz de Arruza Veiga R, Percio Campana M, Pertinelli A (1984) IAC-80. Novo cultivar de mamoneira de porte alto. Boletim técnico n. 85, Instituto Agronômico de Campinas, Brazil

    Google Scholar 

  • Savy Filho A, Banzatto NV, de Arruza F, Veiga R, Percio Campana M, Pertinelli A (1990) New castor bean cultivar IAC-226. Bragantia 49:269–280

    Google Scholar 

  • Scarpa A, Guerci A (1982) Various uses of the castor oil plant (Ricinus communis L.). A review. J Ethnopharmacol 5:117–137

    PubMed  CAS  Google Scholar 

  • Scholz V, Nogueira da Silva J (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32:95–100

    CAS  Google Scholar 

  • Schultze-Motel J, Fritsch R, Hammer K, Hanelt P, Kruse J, Maass HI, Ohle H, Pistrick K (1982) Taxonomy and evolution of cultivated plants: Literature review 1980/1981. Genet Res Crop Evol 30:273–291

    Google Scholar 

  • Shifriss O (1956) Sex instability in Ricinus. Genetics 41:265–280

    PubMed  CAS  Google Scholar 

  • Shifriss O (1960) Conventional and unconventional systems controlling sex variations in Ricinus. J Genet 57:361–388

    Google Scholar 

  • Singh J, Barnejee AK, Swarup J (1976) Efficacy of fungicides in controlling bacterial leaf spot of castor and varieties resistant to it. Indian J Farm Sci 4:125–127

    CAS  Google Scholar 

  • Smith JD (1963) Inheritance of capsule spines on castorbeans (Ricinus communis L.). Crop Sci 3:278–279

    Google Scholar 

  • Solanki SS, Joshi P (2000) Combining ability analysis over environments of diverse pistillate and male parents for seed yield and other traits in castor (Ricinus communis L.). Ind J Genet 60:201–212

    Google Scholar 

  • Stafford RE (1973) Registration of CMR-1 castor germplasm. Crop Sci 13:131

    Google Scholar 

  • Stein H (1965) A gene for unfruitfulness in the castor bean plant and its utilization in hybrid seed production. Crop Sci 5:90–93

    Google Scholar 

  • Stone WJ, Culp TW (1959) Effects of diseases on castorbeans in Mississipi. Plant Dis Rptr 43:827–829

    Google Scholar 

  • Sujatha M (2008) Genetic improvement of castor (Ricinus communis L.) through tissue culture and biotechnological tools. In: Kumar A, Sopory SK (eds) Recent Advances in Plant Biotechnology and its Applications. I.K. International, New Delhi, pp 278–287

    Google Scholar 

  • Sujatha M, Reddy TP (1998) Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep 17:561–566

    CAS  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    PubMed  CAS  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    PubMed  CAS  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28:935–946

    PubMed  CAS  Google Scholar 

  • Sviridov AA (1984) Improving inbred lines of castor for Fusarium resistance. Trop Oilseed Abstr 9:9

    Google Scholar 

  • Sviridov AA (1986) Breeding for resistance to Fusarium. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 157–64

    Google Scholar 

  • Swaminathan MS (1983) Science and the conquest of hunger. Naurang Rai, New Delhi

    Google Scholar 

  • Teixeira Mendes P, Ferreira de Sousa O (1945) Melhoramento da mamoneira (Ricinus communis L.). IV. Segunda e terceira séries de ensaios de variedades. Bragantia 5:351–358

    Google Scholar 

  • Tepora NM (1994) Improvement of castor plant productivity through induced mutations. In: Breeding M (ed) of Oilseed Crops. Joint FAO/IAEA Division, Vienna, pp 149–157

    Google Scholar 

  • Thomas CA (1960) Relations of variety, temperature and seed immaturity to pre-emergence damping-off of castorbean. Phytopathology 51:473–474

    Google Scholar 

  • Thomas CA, Orellana RG (1963) Nature of predisposition of castor beans to Botrytis. II. Raceme compactness, internode length, position of staminate flowers, and bloom in relation to capsule susceptibility. Phytopathology 53:249–251

    Google Scholar 

  • Van De Loo FJ, Turner S, Somerville C (1995) Expressed sequence tags from developing castor seeds. Plant Physiol 108:1141–1150

    Google Scholar 

  • Vanozzi GP, Paolini R, Lauretti D, Alba E (1983) Obiettivi della ricerca per varietà ed ibridi di ricino adatti all’Italia. L’Informatore Agrario 39:26213–26216

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Selected writings translated from the Russian by K.S. Chester. Waltham, MA: Chronica Botanica

    Google Scholar 

  • Velasco L, Fernández-Martínez JM (2002) Breeding oilseed crops for improved oil quality. In: Basra AS, Randhawa LS (eds) Quality Improvement in Field Crops. Food Products Press, Binghamton, NY, USA, pp 309–344

    Google Scholar 

  • Velasco L, Rojas-Barros P, Fernández-Martínez JM (2005) Fatty acid and tocopherol accumulation of a high-oleic acid castor mutant. Ind Crop Prod 22:201–206

    CAS  Google Scholar 

  • Voskoboinik LK (1986a) Heterosis and its use. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 146–156

    Google Scholar 

  • Voskoboinik LK (1986b) Hybrid seed production. In: Moshkin VA (ed) Castor. Amerind, New Delhi, pp 197–200

    Google Scholar 

  • Weber E (2003) Invasive plant species of the world. a reference guide to environmental weeds. CABI, Wallingford

    Google Scholar 

  • Weiss A (2000) Oilseed crops. Blackwell Science, Oxford

    Google Scholar 

  • White OE (1918) Breeding new castor beans. J Hered 9:195–200

    Google Scholar 

  • Zanotto MD, Carvalho do Amaral JG, Poletine JP (2004) Seleção recorrente com utilização de progénies autofecundadas para diminuição da altura de plantas de mamona (Ricinus communis L.) população Guarani Comun. I Congresso Brasileiro de Mamona. http://www.cnpa.embrapa.br/produtos/mamona/ publicacoes/trabalhos_cbm1/. Accessed 1 July 2010

  • Zhou G, Ma BL, Li J, Feng C, Lu J, Qin P (2010) Determining salinity threshold level for castor bean emergence and stand establishment. Crop Sci 50:2030–2036

    Google Scholar 

  • Zimmerman LH (1957) The relationship of a dwarf-internode gene to several important agronomic characters in castorbeans. Agron J 49:251–254

    Google Scholar 

  • Zimmerman LH (1958) Castorbeans, a new oil crop for mechanized production. Adv Agron 10:258–288

    Google Scholar 

  • Zimmerman LH, Parkey W (1954) Pistillate F1 castorbeans: their possible significance in producing commercial hybrid seed. Agron J 46:287

    Google Scholar 

  • Zimmerman LH, Smith JD (1966) Production of F1 seed in castorbeans by use of sex genes sensitive to environment. Crop Sci 6:406–409

    Google Scholar 

Download references

Acknowledgments

The authors thank financial support to conduct breeding research on castor in Spain by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Research Project P08-AGR03962 “Oilseeds with special triacylglycerols” and European Union FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Fernández-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fernández-Martínez, J.M., Velasco, L. (2012). Castor. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0356-2_10

Download citation

Publish with us

Policies and ethics