The Status of Catalysts in PEMFC Technology



Polymer electrolyte membrane fuel cells (PEMFCs), which convert the chemical energy stored in the fuel hydrogen directly and efficiently into electrical energy and water, have the potential to eliminate our fossil energy dependency and emissions, when the hydrogen is derived from renewable energy sources such as solar, wind, biomass, among other possibilities. PEMFCs are being developed as electrical power sources for vehicular, stationary, and portable power applications. In spite of tremendous R&D efforts in the advancements of PEMFC technology, the commercialization is still a long way to go due to the prohibitively high cost of platinum-based catalysts used in the electrodes. However, attempts were made to reduce the quantity of platinum-based catalyst and to extract the maximum activity from a given quantity of platinum in various ways including the development of supported system, employing binary or ternary Pt-based or non-Pt alloy systems, and finding alternate catalysts of various kinds with no platinum in them. In this chapter, we set to examine various logistics and underpinning science in PEMFC catalyst development in one frame analysis, and further, we propose future directions to push the frontiers ahead in order to realize PEMFC commercialization in aspects of both anode and in cathode catalysts of PEMFC.


  1. 1.
  2. 2.
    Wu J, Yuan XZ, Wang H, Blanco M, Martin JJ, Zhang J (2008) Diagnostic tools in PEM fuel cell research: part I electrochemical techniques. Int J Hydrogen Energy 33:1735–1746. doi:10.1016/j.ijhydene.2008.01.013 Google Scholar
  3. 3.
    Barbir F (2005) PEM fuel cells: theory and practice. Elsevier/Academic Press, New YorkGoogle Scholar
  4. 4.
    Ju H, Wang CY (2004) Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc 151:A1954–A1960. doi:10.1149/1.1805523 Google Scholar
  5. 5.
    Li X (2006) Principle of fuel cells. Taylor & Francis, New YorkGoogle Scholar
  6. 6.
    Viswanathan B, Aulice Scibioh M (2008) Fuel cells: principles and applications. Taylor & Francis, New YorkGoogle Scholar
  7. 7.
    Adams WA, Blair J, Bullock KR, Gardner CL (2005) Enhancement of the performance and reliability of CO poisoned PEM fuel cells. J Power Sources 145:55–61. doi:10.1016/j.jpowsour.2004.12.049 Google Scholar
  8. 8.
    Papageorgopoulos DC, de Bruijn FA (2002) Examining a potential fuel cell poison: a voltammetry study of the influence of carbon dioxide on the hydrogen oxidation capability of carbon-supported Pt and PtRu anodes. J Electrochem Soc 149:140–145. Google Scholar
  9. 9.
    Gottesfeld S, Pafford JJ (1988) A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 135:2651–2652. Google Scholar
  10. 10.
    Schmidt VM, Oetjen H-F, Divisek J (1997) Performance improvement of a PEMFC using fuels with CO by addition of oxygen-evolving compounds. J Electrochem Soc 144:L237–L238. Google Scholar
  11. 11.
    Batista MS, Santiago EI, Assaf EM, Ticianelli EA (2005) Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system. J Power Sources 145:50–54. doi:10.1016/j.jpowsour.2004.12.032 Google Scholar
  12. 12.
    Bellows RJ, Marucchi-Soos E, Reynolds RP (1998) The mechanism of CO mitigation in proton exchange membrane fuel cells using dilute H2O2 in the anode humidifier. Electrochem Solid State Lett 1:69–70. doi:S1099-0062(97)12-131-9 Google Scholar
  13. 13.
    Choudhary TV, Goodman DW (1999) Stepwise methane steam reforming: a route to CO-free hydrogen. Catal Lett 59:93–94. doi:10.1023/A:1019008202235 Google Scholar
  14. 14.
    Lee S-H, Han J-S, Lee K-Y (2002) Development of PROX (preferential oxidation of CO) system for 1 kWe PEMFC. Kor J Chem Eng 19:431–433. doi:10.1007/BF02697152 Google Scholar
  15. 15.
    Lee S-H, Han J-S, Lee K-Y (2002) Development of 10-kWe preferential oxidation for fuel cell vehicles. J Power Sources 109:394–402. doi:10.1016/S0378-7753(02)00096-4 Google Scholar
  16. 16.
    Batista MS, Santiago EI, Assaf EM, Ticianelli EA (2004) High efficiency steam reforming of ethanol by cobalt-based catalysts. J Power Sources 134:27–32. doi:10.1016/j.jpowsour.2004.01.052 Google Scholar
  17. 17.
    Heinzel A, Vogel B, Hubner P (2002) Reforming of natural gas-hydrogen generation for small scale stationary fuel cell systems. J Power Sources 105:202–207. doi:10.1016/S0378-7753(01)00940-5 Google Scholar
  18. 18.
    Zalc JM, Loffler DG (2002) Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J Power Sources 111:58–64. doi:10.1016/S0378-7753(02)00269-0 Google Scholar
  19. 19.
    Chen G, Yuan Q, Li H, Li S (2004) CO selective oxidation in a microchannel reactor for PEM fuel cell. Chem Eng J 101:101–106. doi:10.1016/j.cej.2004.01.020 Google Scholar
  20. 20.
    Gasteiger HA, Markovic NM, Ross PN Jr, Cairns EJ (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625. doi:10.1021/j100053a042 Google Scholar
  21. 21.
    Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 degree C. J Phys Chem 99:16757–16767. doi:10.1021/j100045a042 Google Scholar
  22. 22.
    Grgur BN, Zhuang G, Markovic NM, Ross PN Jr (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913. doi:10.1021/jp9704168 Google Scholar
  23. 23.
    Ley KL, Liu R, Pu C, Fan Q, Leyarovska N, Segree C, Smotkin ES (1997) Methanol oxidation on single-phase Pt–Ru–Os ternary alloys. J Electrochem Soc 144:1543–1548. Google Scholar
  24. 24.
    Chen KY, Shen PK, Tseung ACC (1995) Anodic oxidation of impure H2 on teflon-bonded Pt–Ru/WO3/C electrodes. J Electrochem Soc 142:L185–L187. Google Scholar
  25. 25.
    Mukerjee S, Srinivasan S, Soriaga MP (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422. Google Scholar
  26. 26.
    Wang K, Gasteiger HA, Markovic NM, Ross PN Jr (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt–Ru alloy surfaces. Electrochim Acta 41:2587–2593. doi:10.1016/0013-4686(96)00079-5 Google Scholar
  27. 27.
    Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301. doi:10.1021/j100020a063 Google Scholar
  28. 28.
    Koper MTM, Shubina TE, van Santen RA (2002) Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J Phys Chem B 106:686–692. doi:10.1021/jp0134188 Google Scholar
  29. 29.
    Schmidt VM, Bröckerhoff P, Höhlein B, Menzer R, Stimming U (1994) Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources 49:299–313. doi:10.1016/0378-7753(93)01830-B Google Scholar
  30. 30.
    Lin SD, Hsiao TC (1999) Morphology of carbon supported Pt–Ru electrocatalyst and the co tolerance of anodes for PEM fuel cells. J Phys Chem B 103:97–103. doi:10.1021/jp982296p Google Scholar
  31. 31.
    Acres GJK, Frost JC, Hards GA, Potter RJ, Ralph TR, Thompsett D, Burstein GT, Hutchings GJ (1997) Electrocatalysts for fuel cells. Catal Today 38:393–400. doi:10.1016/S0920-5861(97)00050-3 Google Scholar
  32. 32.
    Iorio T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230, Scholar
  33. 33.
    Lipkowski J, Ross PN (1998) Electrocatalysis. Wiley-VCH, New YorkGoogle Scholar
  34. 34.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–230. doi:10.1016/S0167-5729(01)00022-X Google Scholar
  35. 35.
    Watanabe M, Moto S (1975) Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273. doi:10.1016/S0022-0728(75)80261-0 Google Scholar
  36. 36.
    Anderson AB, Grantscharova E, Seong S (1996) Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J Electrochem Soc 143:2075–2082, Scholar
  37. 37.
    Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grger BN, Markovic NM, Ross PN Jr, Giallombardo PN, DeCatro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2:12–15, Scholar
  38. 38.
    Ticianelli EA, Mukerjee S, Lee SJ, McBreen J, Giallombardo JR, De Castro ES (1998) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 162Google Scholar
  39. 39.
    Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619, Scholar
  40. 40.
    Grgur BN, Markovic NM, Ross PN (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 177Google Scholar
  41. 41.
    Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2:437–439. Google Scholar
  42. 42.
    Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314. doi:10.1039/B007768M Google Scholar
  43. 43.
    Markovic NM, Ross PN (2000) Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim Acta 45:4101–4115. doi:10.1016/S0013-4686(00)00526-0 Google Scholar
  44. 44.
    Gasteiger HA, Markovic NM, Ross PN (1996) Structural effects in electrocatalysis: electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal Lett 36:1–8. doi:10.1007/BF00807197 Google Scholar
  45. 45.
    Markovic NM, Widelov A, Ross PN, Monteiro OR, Brown IG (1997) Electrooxidation of CO and CO/H2 mixtures on a Pt–Sn catalyst prepared by an implantation method. Catal Lett 43:161–166. doi:10.1023/A:1018907110025 Google Scholar
  46. 46.
    Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ X-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65:1466–1469. doi:10.1103/PhysRevLett.65.1466 Google Scholar
  47. 47.
    Tidswell IM, Markovic NM, Ross PN (1993) Potential dependent surface relaxation of the Pt(001)/electrolyte interface. Phys Rev Lett 71:1601–1604. doi:10.1103/PhysRevLett.71.1601 Google Scholar
  48. 48.
    Lima A, Coutanceau C, Leger JM, Lamy C (2001) Investigation of ternary catalysts for methanol electrooxidation. J Appl Electrochem 31:379–386. doi:10.1023/A:1017578918569 Google Scholar
  49. 49.
    Gotz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43:3637–3644. doi:10.1016/S0013-4686(98)00121-2 Google Scholar
  50. 50.
    Holleck GL, Pasquariello DM, Clauson SL (1999) In: Gottesfeld S, Fuller TF, Halpert G (eds) Proton conducting membrane fuel cells, PV 98-27, The electrochemical society proceedings series, Pennington, NJ, p 150Google Scholar
  51. 51.
    Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204. doi:10.1016/S0013-4686(02)00602-3 Google Scholar
  52. 52.
    Venkataraman R, Kunz HR, Fenton JM (2003) Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells. J Electrochem Soc 150:A278–A284. Google Scholar
  53. 53.
    He C, Kunz HR, Fenton JM (2003) Electro-oxidation of hydrogen with carbon monoxide on Pt/Ru-based ternary catalysts. J Electrochem Soc 150:A1017–A1024. Google Scholar
  54. 54.
    Liang Y, Zhang H, Zhong H, Zhou X, Tian Z, Xu D, Yi B (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238:468–476. doi:10.1016/j.jcat.2006.01.005 Google Scholar
  55. 55.
    Liang Y, Zhang H, Tian Z, Zhu X, Wang X, Yi B (2006) Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J Phys Chem B 110:7828–7834. doi:10.1021/jp0602732 Google Scholar
  56. 56.
    Bohm H, Pohl FA (1968) Wiss. Ber, AEG-Telefunken, (Allg. Elektricitaets-Ges)-Telefunken 41: 46Google Scholar
  57. 57.
    von Benda K, Binder H, Köhling A, Sandstede G (1972) Electrocatalysis to fuel cells. University of Washington Press, SeattleGoogle Scholar
  58. 58.
    von Benda SP (1975) Surface characterization of catalytically active tungsten carbide. J Catal 39:298–301. doi:10.1016/0021-9517(75)90335-8 Google Scholar
  59. 59.
    Ross PN, Stonehart P (1977) The relation of surface structure to the electrocatalytic activity of tungsten carbide. J Catal 48:42–59. doi:10.1016/0021-9517(77)90076-8 Google Scholar
  60. 60.
    Christian JB, Mendenhall RG (2003) Tungsten containing fuel cell catalyst and method of making them. US Patent 6,656,870Google Scholar
  61. 61.
    Christian JB, Mendenhall RG (2006) Tungsten containing fuel cell catalyst and method of making them. US Patent 7,060,648Google Scholar
  62. 62.
    McIntyre DR, Burstein GT, Vossen A (2002) Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J Power Sources 107:67–73. doi:10.1016/S0378-7753(01)00987-9 Google Scholar
  63. 63.
    Izhar S, Nagai M (2008) Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. J Power Sources 182:52–60. doi:10.1016/j.jpowsour.2008.03.084 Google Scholar
  64. 64.
    Nagai M, Yoshida M, Tominaga H (2007) Tungsten and nickel tungsten carbides as anode electrocatalysts. Electrochim Acta 52:5430–5436. doi:10.1016/j.electacta.2007.02.065 Google Scholar
  65. 65.
    Izhar S, Yoshida M, Nagai M (2009) Characterization and performances of cobalt-tungsten and molybdenum–tungsten carbides as anode catalyst for PEFC. Electrochim Acta 54:1255–1262. doi:10.1016/j.electacta.2008.08.049 Google Scholar
  66. 66.
    Tasik GS, Miljanic SS, Kaninski MPM, Saponjic DP, Nikolic VL (2009) Non-noble metal catalyst for a future Pt free PEMFC. Electrochem Commun 11:2097–2100. doi:10.1016/j.elecom.2009.09.003 Google Scholar
  67. 67.
    Li B, Qiao J, Zheng J, Yang D, Ma J (2009) Carbon-supported Ir-V nanoparticle as novel platinum-free anodic catalysts in proton exchange membrane fuel cell. Int J Hydrogen Energy 34:5144–5151. doi:10.1016/j.ijhydene.2009.04.013 Google Scholar
  68. 68.
    Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15. doi:10.1016/j.jpowsour.2005.05.098 Google Scholar
  69. 69.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi:10.1021/jp047349j Google Scholar
  70. 70.
    Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566. doi:10.1021/ic9022486 Google Scholar
  71. 71.
    Masel RI (1995) Principles of adsorption and reaction on solid surfaces. Wiley, New YorkGoogle Scholar
  72. 72.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. doi:10.1016/j.apcatb.2004.06.021 Google Scholar
  73. 73.
    Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:143–164. doi:10.1016/j.nantod.2008.10.010 Google Scholar
  74. 74.
    Chen JY, Lim B, Lee EP, Xia YN (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95. doi:10.1016/j.nantod.2008.09.002 Google Scholar
  75. 75.
    Zhang CJ, Luo J, Njoki PN, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L, Fang B, Xu ZC (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1:454–466. doi:10.1039/B810734N Google Scholar
  76. 76.
    Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224. doi:10.1016/0022-0728(93)80380-Z Google Scholar
  77. 77.
    Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756. Google Scholar
  78. 78.
    Colon-Mercado HR, Kim H, Popov BN (2004) Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Commun 6:795–799. doi:10.1016/j.elecom.2004.05.028 Google Scholar
  79. 79.
    Wei Z, Guo H, Tang Z (1996) Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size. J Power Sources 62:233–236. doi:10.1016/S0378-7753(96)02425-1 Google Scholar
  80. 80.
    Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction. J Phys Chem B 108:17767–17774. doi:10.1021/jp0486649 Google Scholar
  81. 81.
    Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263. doi:10.1016/j.jpowsour.2005.05.011 Google Scholar
  82. 82.
    Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144:11–20. doi:10.1016/j.jpowsour.2004.11.067 Google Scholar
  83. 83.
    Bonakdarpour A, Wenzel J, Stevens DA, Sheng S, Monchesky TI, Lobel R, Atanasoski RT, Schmoeckel AK, Vernstrom GD, Debe MK, Dahn JR (2005) Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1–xMx (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells. J Electrochem Soc 152:A61–A72. Google Scholar
  84. 84.
    Protsailo L, Haug A (2005) Electrochemical society meeting abstracts, 208th ECS Meeting, Los Angeles, CAGoogle Scholar
  85. 85.
    Thompsett D (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications vol. 3, Wiley, Chichester, UKGoogle Scholar
  86. 86.
    Ralph TR, Keating JE, Collis NJ, Hyde TI (1997) ETSU Contract Report F/02/00038Google Scholar
  87. 87.
    Xiong L, Manthiram A (2005) Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J Electrochem Soc 152:A697–A703. Google Scholar
  88. 88.
    Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt−Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108:11024–11034. doi:10.1021/jp049034+ Google Scholar
  89. 89.
    Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt−Ni and Pt−Co alloy catalysts. J Phys Chem B 106:4181–4191. doi:10.1021/jp013442l Google Scholar
  90. 90.
    Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL (2005) Durability of PEFCs at high humidity conditions. J Electrochem Soc 152:A104–A113. Google Scholar
  91. 91.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305. doi:10.1126/science.1170377 Google Scholar
  92. 92.
    Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131:7542–7543. doi:10.1021/ja902256a Google Scholar
  93. 93.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222. doi:10.1126/science.1134569 Google Scholar
  94. 94.
    Stamenkovic VR, Flower B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497. doi:10.1126/science.1135941 Google Scholar
  95. 95.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.1038/nmat1840 Google Scholar
  96. 96.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135. doi:10.1002/anie.200462335 Google Scholar
  97. 97.
    Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valero J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262. doi:10.1007/s11244-007-9003-x Google Scholar
  98. 98.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 Reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964. doi:10.1021/jp0379953 Google Scholar
  99. 99.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704. doi:10.1021/jp055634c Google Scholar
  100. 100.
    Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481. doi:10.1021/ja053695i Google Scholar
  101. 101.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core-shell nanoparticle supports. Electrochem Commun 9:2848–2853. doi:10.1016/j.elecom.2007.10.009 Google Scholar
  102. 102.
    Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46:8988–8991. doi:10.1002/anie.200703331 Google Scholar
  103. 103.
    Ohno S, Yagyuu K, Nakatsuji K, Komori F (2004) Dissociation preference of oxygen molecules on an inhomogeneously strained Cu(0 0 1) surface. Surf Sci 554:183–192. doi:10.1016/j.susc.2004.01.063 Google Scholar
  104. 104.
    Kammler Th, Küppers J (2001) The kinetics of the reaction of gaseous hydrogen atoms with oxygen on Cu(1 1 1) surfaces toward water. J Phys Chem B 105:8369–8374. doi:10.1021/jp0112222 Google Scholar
  105. 105.
    Vellianitis DK, Kammler Th, Küppers J (2001) Interaction of gaseous hydrogen atoms with oxygen covered Cu(1 0 0) surfaces. Surf Sci 482–485:166–170. doi:10.1016/S0039-6028(01)00855-X Google Scholar
  106. 106.
    Mentus SV (2004) Oxygen reduction on anodically formed titanium dioxide. Electrochim Acta 50:27–32. doi:10.1016/j.electacta.2004.07.009 Google Scholar
  107. 107.
    Limoges BR, Stanis RJ, Turner JA, Herring AM (2005) Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12−n)VnO40](3+n)− (n = 0–3). Electrochim Acta 50:1169–1179. doi:10.1016/j.electacta.2004.08.014 Google Scholar
  108. 108.
    Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K (2004) Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim Acta 49:3479–3485. doi:10.1016/j.electacta.2004.03.018 Google Scholar
  109. 109.
    Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoe N (2004) Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode. J Electrochem Soc 151:A158–A163. Google Scholar
  110. 110.
    Liu L, Lee JW, Popov BN (2006) Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction. J Power Sources 162:1099–1103. doi:10.1016/j.jpowsour.2006.08.003 Google Scholar
  111. 111.
    Vante A, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323:431–432. doi:10.1038/323431a0 Google Scholar
  112. 112.
    Alcantara KS, Castellanos AR, Dante R, Feria OS (2006) RuxCrySez electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell. J Power Sources 157:114–120. doi:10.1016/j.jpowsour.2005.07.065Google Scholar
  113. 113.
    Hara Y, Minami N, Itagaki H (2008) Electrocatalytic properties of ruthenium modified with Te metal for the oxygen reduction reaction. Appl Catal A 340:59–66. doi:10.1016/j.apcata.2008.01.036 Google Scholar
  114. 114.
    Alkantara KS, Feria OS (2008) Kinetics and PEMFC performance of RuxMoySez nanoparticles as a cathode catalyst. Electrochim Acta 53:4981–4989. doi:10.1016/j.electacta.2008.02.025 Google Scholar
  115. 115.
    Alkantara KS, Feria OS (2009) Comparative study of oxygen reduction reaction on RuxMySez (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell. J Power Sources 192:165–169. doi:10.1016/j.jpowsour.2008.10.118 Google Scholar
  116. 116.
    Shen MY, Chiao SP, Tsai DS, Wilkinson DP, Jiang JC (2009) Preparation and oxygen reduction activity of stable RuSex/C catalyst with pyrite structure. Electrochim Acta 54:4297–4304. doi:10.1016/j.electacta.2009.02.081 Google Scholar
  117. 117.
    Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS (2010) Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrogen Energy 35:6508–6517. doi:10.1016/j.ijhydene.2010.04.032 Google Scholar
  118. 118.
    Sánchez GR, Feria OS (2010) Int J Hydrogen Energy, #5, 12105Google Scholar
  119. 119.
    Lee K, Zhang L, Zhang J (2007) Ternary non-noble metal chalcogenide (W–Co–Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 9:1704–1708. doi:10.1016/j.elecom.2007.03.025 Google Scholar
  120. 120.
    Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons RR, Campbell SA (2006) A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 110:10762–10770. doi:10.1021/jp057468e Google Scholar
  121. 121.
    Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182. doi:10.1016/j.jpowsour.2005.05.069 Google Scholar
  122. 122.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. doi:10.1016/j.electacta.2008.02.012 Google Scholar
  123. 123.
    Beck F (1977) The redox mechanism of the chelate-catalysed oxygen cathode. J Appl Electrochem 7:239–245. doi:10.1007/BF00618991 Google Scholar
  124. 124.
    Wiesener K (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22:457–475. doi:10.1016/0254-0584(89)90010-2 Google Scholar
  125. 125.
    Alt H, Binder M, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28:8–19. doi:10.1016/0021-9517(73)90173-5 Google Scholar
  126. 126.
    Jiang R, Xu L, Jin R, Dong S (1985) Fenxi huaxue. Anal Chem 13:270Google Scholar
  127. 127.
    van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804. doi:10.1016/S0013-4686(98)80010-8 Google Scholar
  128. 128.
    Chu D, Jiang R (2002) Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics 148:591–599. doi:10.1016/S0167-2738(02)00124-8 Google Scholar
  129. 129.
    Liu H, Song C, Tang Y, Zhang J (2007) High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim Acta 52:4532–4538. doi:10.1016/j.electacta.2006.12.056 Google Scholar
  130. 130.
    Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction. J Electrochem Soc 145:3493–3499. Google Scholar
  131. 131.
    Jiang R, Chu D (2000) Remarkably active catalysts for the electroreduction of O2 to H2O for use in an acidic electrolyte containing concentrated methanol. J Electrochem Soc 147:4605–4609. Google Scholar
  132. 132.
    Bron M, Fiechter S, Hilgendorff M, Bogdanoff P (2002) Catalysts for oxygen reduction from heat-treated carbon-supported iron phenanthroline complexes. J Appl Electrochem 32:211–216. doi:10.1023/A:1014753613345 Google Scholar
  133. 133.
    Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated Iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107:9034–9041. doi:10.1021/jp030349j Google Scholar
  134. 134.
    Ye S, Vijh AK (2003) Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction. Electrochem Commun 5:272–275. doi:10.1016/S1388-2481(03)00043-2 Google Scholar
  135. 135.
    Ye S, Vijh AK (2005) Cobalt-carbonized aerogel nanocomposites electrocatalysts for the oxygen reduction reaction. Int J Hydrogen Energy 30:1011–1015. doi:10.1016/j.ijhydene.2005.01.004 Google Scholar
  136. 136.
    Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96. doi:10.1016/j.jcat.2006.01.022 Google Scholar
  137. 137.
    Ma ZF, Xie XY, Ma XX, Zhang DY, Ren Q, Mohr NH, Schimidt VM (2006) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. Electrochem Commun 8:389–394. doi:10.1016/j.jpowsour.2007.08.028 Google Scholar
  138. 138.
    Faubert G, Lalande G, Cote R, Guay D, Dodelet DP, Weng LT, Bertrand P, Dénès G (1996) Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41:1689–1701. doi:10.1016/0013-4686(95)00423-8 Google Scholar
  139. 139.
    Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) Activation of various Fe-based precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells. J Electrochem Soc 144:218–226. Google Scholar
  140. 140.
    Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Poleunis C, Bertrand P (1998) Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 43:1969–1984. doi:10.1016/S0013-4686(97)10120-7 Google Scholar
  141. 141.
    Cote R, Lalande G, Faubert G, Guay D, Dodelet JP, Denes G (1998) Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction. J Electrochem Soc 145:2411–2418. Google Scholar
  142. 142.
    Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43:341–353. doi:10.1016/S0013-4686(97)00087-X Google Scholar
  143. 143.
    Faubert G, Cote R, Dodelet JP, Lefevre M, Bertrand P (1999) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride. Electrochim Acta 44:2589–2603. doi:10.1016/S0013-4686(98)00382-X Google Scholar
  144. 144.
    Lefevre M, Dodelet JP, Bertrand J (2000) O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. J Phys Chem B 104:11238–11247. doi:10.1021/jp002444n Google Scholar
  145. 145.
    Lefèvre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106:8705–8713. doi:10.1021/jp020267f Google Scholar
  146. 146.
    Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim Acta 51:3202–3213. doi:10.1016/j.electacta.2005.09.012 Google Scholar
  147. 147.
    Jaouen F, Charraterour F, Dodelet JP (2006) Fe-based catalysts for oxygen reduction in PEMFCS. J Electrochem Soc 153:A689–A698. Google Scholar
  148. 148.
    Villers D, Jacques-Bedard X, Dodelet JP (2004) Fe-based catalysts for oxygen reduction in PEM fuel cells. J Electrochem Soc 151:A1507–A1515. Google Scholar
  149. 149.
    Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107:1376–1386. doi:10.1021/jp021634q Google Scholar
  150. 150.
    Lefevre M, Dodelet JP, Bertrand P (2005) Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of Co-based electrocatalysts. J Phys Chem B 109:16718–16724. doi:10.1021/jp0529265 Google Scholar
  151. 151.
    Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J Phys Chem B 103:2042–2049. doi:10.1021/jp9821735 Google Scholar
  152. 152.
    Zhao F, Harnisch F, Schroder W, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. doi:10.1016/j.elecom.2005.09.032 Google Scholar
  153. 153.
    Fraga MA, Jordao E, Mendes MJ, Freita MMA, Faria JL, Figueredo JL (2002) Properties of carbon-supported platinum catalysts: role of carbon surface sites. J Catal 209:355–364. doi:10.1006/jcat.2002.3637 Google Scholar
  154. 154.
    Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A (1995) Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol. J Electrochem Soc 142:2572–2576. Google Scholar
  155. 155.
    McBreen J, Olender H, Srinivasan S, Kordesch K (1981) Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem 11:787–796. doi:10.1007/BF00615184 Google Scholar
  156. 156.
    Antolini E (2009) Polymer supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–19. doi:10.1016/j.apcata.2009.05.045 Google Scholar
  157. 157.
    Yoo E, Okada T, Kizuka T, Nakamura J (2008) Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells. J Power Sources 180:221–226. doi:10.1016/j.jpowsour.2008.01.065 Google Scholar
  158. 158.
    Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180:746–763. doi:10.1016/j.ssi.2009.03.007 Google Scholar
  159. 159.
    Zhang S, Zhu H, Yu H, Hou J, Yi B, Ming P (2007) The oxidation resistance of tungsten carbide as catalyst support for proton exchange membrane fuel cells. Chin J Catal 28:109–111. doi:10.1016/S1872-2067(07)60014-X Google Scholar
  160. 160.
    Chhina H, Campbell S, Kesler O (2007) Thermal and electrochemical stability of tungsten carbide catalyst supports. J Power Sources 164:431–440. doi:10.1016/j.jpowsour.2006.11.003 Google Scholar
  161. 161.
    Chhina H, Campbell S, Kesler O (2008) High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J Power Sources 179:50–59. doi:10.1016/j.jpowsour.2007.12.105 Google Scholar
  162. 162.
    Antolini E, Gonzalez ER (2009) Polymer supports for low-temperature fuel cell catalysts. Appl Catal B 365:1–19. doi:10.1016/j.apcata.2009.05.045 Google Scholar
  163. 163.
    Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806. doi:doi. 10.1002/pssb.200879537Google Scholar
  164. 164.
    Viswanathan B (2009) In: Kaneco S, Viswanathan B, Katsumata H (eds) Photo/electrochemistry and photobiology in the environment, energy and fuel, Research signpost, pp 1–14Google Scholar
  165. 165.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NASA-URC Centre for Advanced Nanoscale MaterialsUniversity of Puerto Rico-Rio PiedrasSan JuanUSA
  2. 2.National Centre for Catalysis Research (NCCR), Indian Institute of Technology Madras (IITM)ChennaiIndia

Personalised recommendations