Skip to main content

Heterogeneous Catalysts for Converting Renewable Feedstocks to Fuels and Chemicals

  • Chapter
  • First Online:
Catalysis for Alternative Energy Generation

Abstract

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilise renewable feedstocks as sustainable sources of fuel and chemicals. Catalysis has a rich history of facilitating energy-efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era, catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to biofuels and chemicals. This chapter will highlight some of the recent developments in heterogeneous catalytic technology for the synthesis of fuels and chemicals from renewable resources, derived from plant and aquatic oil sources as well as lignocellulosic feedstocks. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures and effect of tuning surface polarity to improve catalyst compatibility with highly polar bio-based substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Walter B, Gruson JF, Monnier G (2008) Diesel engines and fuels: a wide range of evolutions to come. Oil Gas Sci Technol 63:387–393

    Google Scholar 

  3. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:1–2

    Article  CAS  Google Scholar 

  4. http://www.hm-treasury.gov.uk/independent_reviews/stern_review_economicsclimate_change/stern_review_report.cfm. Accessed Jul 2010

  5. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  Google Scholar 

  6. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  7. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  8. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  9. Lanser AC, List GR, Holloway RK, Mounts YL (1991) FTIR estimation of free fatty acid content in crude oils extracted from damaged soybeans. J Am Oil Chem Soc 68:448–449

    Article  CAS  Google Scholar 

  10. Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  CAS  Google Scholar 

  11. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  CAS  Google Scholar 

  12. Kulkarni MG, Dalai AK (2006) Waste cooking oil—an economical source of biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  13. Bensmira M, Jiang B, Nsabimana C, Jian T (2007) Effect of lavender and thyme incorporation in sunflower seed oil on its resistance to frying temperatures. Food Res Int 40:341–346

    Article  CAS  Google Scholar 

  14. Saad B, Ling CW, Jab MS, Lim BP, Ali ASM, Wai WT, Saleh MI (2007) Determination of free fatty acids in palm oil samples using non-aqueous flow injection titrimetric method. Food Chem 102:1407–1414

    Article  CAS  Google Scholar 

  15. Paik M-J, Kim H, Lee J, Brand J, Kim K-R (2009) Separation of triacylglycerols and free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography. J Chromatogr A 1216:5917–5923

    Article  CAS  Google Scholar 

  16. Narasimharao K, Lee AF, Wilson K (2007) Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy 1:19–30

    Google Scholar 

  17. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  18. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  19. Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91

    Article  CAS  Google Scholar 

  20. Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670

    Article  CAS  Google Scholar 

  21. Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96

    Article  CAS  Google Scholar 

  22. Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  23. Canakci M, Gerpen JV (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    CAS  Google Scholar 

  24. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  25. Dorado MP, Ballesteros E, Almeida JA, Shellet C, Lohrlein HP, Krause R (2002) An alkali-catalysed transesterification process for high free fatty acid waste oils. Trans ASAE 45:525–529

    CAS  Google Scholar 

  26. Turck R (2002) US patent, 0156305B

    Google Scholar 

  27. Ma FR, Clements LD, Hanna MA (1999) The effect of mixing on transesterification of beef tallow. Bioresour Technol 69:289–293

    Article  CAS  Google Scholar 

  28. Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–2109

    Article  CAS  Google Scholar 

  29. Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  30. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    Article  CAS  Google Scholar 

  31. Tanabe K, Misono M, Ono Y, Hattori H (1989) Preface. Stud Surf Sci Catal 51:1

    Article  Google Scholar 

  32. Hattori H (1995) Heterogeneous basic catalysts. Chem Rev 95:537–558

    Article  CAS  Google Scholar 

  33. Greenwood NN, Earnshaw A (1989) Chemistry of the elements. Pergamon Press, Oxford

    Google Scholar 

  34. Dacquin JP, Lee AF, Wilson K (2010) Heterogeneous catalysts for biodiesel production. In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals. RSC Publishing, Cambridge

    Google Scholar 

  35. Albuquerque MCG, Azevedo DCS, Cavalcante CL Jr, Gonsalez JS, Robles JMM, Tost RM, Castellon ER, Lopez AJ, Torres PM (2009) Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. J Mol Catal A Chem 300:19–24

    Article  CAS  Google Scholar 

  36. Paterson GR, Scarrah WP (1984) Rapeseed oil transesterification by heterogeneous catalysis. J Am Oil Chem Soc 61:1593–1597

    Article  Google Scholar 

  37. Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 79:249–253

    Article  Google Scholar 

  38. Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Tost RM, Santamaria J, Fierro JLG (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B Environ 73:317–326

    Article  CAS  Google Scholar 

  39. Yan S, Lu H, Liang B (2008) Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy Fuel 22:646–651

    Article  CAS  Google Scholar 

  40. Granados ML, Alonso DM, Sadaba I, Mariscal R, Ocon P (2009) Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: the case of triglycerides methanolysis using CaO. Appl Catal B Environ 89:265–272

    Article  CAS  Google Scholar 

  41. Demirbas A (2007) Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers Manag 48:937–941

    Article  CAS  Google Scholar 

  42. Watkins RS, Lee AF, Wilson K (2004) Li-CaO catalysed tri-glycerides transesterification for biodiesel applications. Green Chem 6:335–340

    Article  CAS  Google Scholar 

  43. MacLeod CS, Harvey AP, Lee AF, Wilson K (2008) Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Eng J 135:63–70

    Article  CAS  Google Scholar 

  44. Alonso DM, Mariscal R, Granados ML, Torres PM (2009) Biodiesel preparation using Li/CaO catalysts: activation process and homogeneous contribution. Catal Today 143:167

    Article  CAS  Google Scholar 

  45. Wilson K, Hardacre C, Lee AF, Montero JM, Shellard L (2008) The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem 10:654–659

    Article  CAS  Google Scholar 

  46. Philipp R, Fujimoto K (1992) FTIR spectroscopic study of CO2 adsorption/desorption on MgO/CaO catalysts. J Phys Chem 96:9035–9038

    Article  CAS  Google Scholar 

  47. Verziu M, Cojocara B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10:373–381

    Article  CAS  Google Scholar 

  48. Montero JM, Gai P, Wilson K, Lee AF (2009) Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem 11:265–268

    Article  CAS  Google Scholar 

  49. Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E (2006) Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res 45:3009–3014

    Article  CAS  Google Scholar 

  50. Siano D, Nastasi M, Santacesaria E, Di Serio M, Tesser R, Minutillo G, Ledda M, Tenore T (2006) PCT application no. WO2006/050925

    Google Scholar 

  51. Barakos N, Pasias S, Papayannakos N (2008) Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresour Technol 99:5037–5042

    Article  CAS  Google Scholar 

  52. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl Catal A Gen 287:183–190

    Article  CAS  Google Scholar 

  53. Xi X, Davis RJ (2008) Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol. J Catal 254:190–197

    Article  CAS  Google Scholar 

  54. Fukuda H, Kondo A, Noda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalysed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15

    Google Scholar 

  55. Vicente G, Coteron A, Martinez M, Aracil J (1998) Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind Crops Prod 8:29–35

    Article  CAS  Google Scholar 

  56. Lopez DE, Goodwin JG, Bruce DA, Lotero E (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295:97–105

    Article  CAS  Google Scholar 

  57. Peters TA, Benes NE, Holmen A, Keurentjes JTF (2006) Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol. Appl Catal A Gen 297:182

    Article  CAS  Google Scholar 

  58. Suwannakarn K, Lotero E, Goodwin JG Jr, Lu C (2008) Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. J Catal 255:279–286

    Article  CAS  Google Scholar 

  59. Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81

    Article  CAS  Google Scholar 

  60. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217

    Article  CAS  Google Scholar 

  61. Okuhara T, Mizuno N, Misono M (1996) Catalytic chemistry of heteropoly compounds. Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  62. Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev 29:269–321

    Article  CAS  Google Scholar 

  63. Newman AD, Brown DR, Siril P, Lee AF, Wilson K (2006) Structural studies of high dispersion H3PW12O 40/SiO2 solid acid catalysts. Phys Chem Chem Phys 8:2893–2902

    Article  CAS  Google Scholar 

  64. Newman AD, Lee AF, Wilson K, Young NA (2005) On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catal Lett 102:45–50

    Article  CAS  Google Scholar 

  65. Okuhara T, Nishimura T, Watanabe H, Misono M (1992) Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions. J Mol Catal 74:247–256

    Article  CAS  Google Scholar 

  66. Okuhara T, Arai T, Ichiki T, Lee KY, Misono M (1989) Dehydration mechanism of ethanol in the pseudoliquid phase of H3−x Cs x PW12O40. J Mol Catal 55:293–301

    Article  CAS  Google Scholar 

  67. Narasimharao K, Brown DR, Lee AF, Siril PF, Wilson K (2007) Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J Catal 248:226–234

    Article  CAS  Google Scholar 

  68. Pesaresi L, Brown DR, Lee AF, Montero JM, Williams H, Wilson K (2009) Cs-doped H4SiW12O40 catalysts for biodiesel applications. Appl Catal A Gen 360:50–58

    Article  CAS  Google Scholar 

  69. Peterson GR, Sacarrah WP (1984) Rapeseed oil transesterification by heterogeneous catalysis. J Am Oil Chem Soc 61:1593–1597

    Article  CAS  Google Scholar 

  70. Pizzio LR, Vazquez PG, Caceres CV, Blanco MN, Alesso EN, Erlich MI, Torviso R, Finkielsztein L, Lantano B, Moltrasio GY, Aguirre JM (2004) Influence of the alcohol molecular size in the dehydration reaction catalyzed by carbon-supported heteropolyacids. Catal Lett 93:67–73

    Article  CAS  Google Scholar 

  71. Bossaert WD, De Vos DE, Van Rhijn W, Bullen J, Grobet PJ, Jacobs PA (1999) Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides. J Catal 182:156–164

    Article  CAS  Google Scholar 

  72. Wilson K, Lee AF, Macquarrie DJ, Clark JH (2002) Structure and reactivity of sol-gel sulphonic acid silicas. Appl Catal A Gen 228:127–133

    Article  CAS  Google Scholar 

  73. Chen XR, Ju YH, Mou CY (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737

    Article  CAS  Google Scholar 

  74. Mbaraka IK, Radu DR, Lin VS-Y, Shanks BH (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336

    Article  CAS  Google Scholar 

  75. Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl Catal A Gen 1–2:239–248

    Article  CAS  Google Scholar 

  76. Gaudino MC, Valentin R, Brunel D, Fajula F, Quignard F, Riondel A (2005) Titanium-based solid catalysts for transesterification of methyl-methacrylate by 1-butanol: the homogeneous catalysis contribution. Appl Catal A Gen 2:157–164

    Article  CAS  Google Scholar 

  77. Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38:56–77

    Article  CAS  Google Scholar 

  78. Linssen T, Cassiers K, Cool P, Vansant EF (2003) Mesoporous template silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Adv Colloid Interface Sci 103:121–147

    Article  CAS  Google Scholar 

  79. Davidson A (2002) Modifying the walls of mesoporous silicas prepared by supramolecular-templating. Curr Opin Colloid Interface Sci 7:92–106

    Article  CAS  Google Scholar 

  80. Galarneau A, Iapichella J, Bonhomme K, Di Renzo F, Kooyman P, Terasaki O, Fajula F (2006) Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater 16:1657–1667

    Article  CAS  Google Scholar 

  81. Dacquin JP, Dhainaut J, Duprez D, Royer S, Lee AF, Wilson K (2009) An efficient route to highly organized, tunable macroporous-mesoporous alumina. J Am Chem Soc 131:12896–12897

    Article  CAS  Google Scholar 

  82. Dhainaut J, Dacquin JP, Lee AF, Wilson K (2010) Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem 12:296–303

    Article  CAS  Google Scholar 

  83. Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons: understanding the reaction routes. Top Catal 52:229–240

    Article  CAS  Google Scholar 

  84. Czernik S, French RJ, Magrini-Bair KA, Chornet E (2004) The production of hydrogen by steam reforming of trap grease-progress in catalyst performance. Energy Fuel 18:1738–1743

    Article  CAS  Google Scholar 

  85. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  86. Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A Gen 329:120–129

    Article  CAS  Google Scholar 

  87. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  88. Stumborg M, Wong A, Hogan E (1996) Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour Technol 56:13–18

    Article  CAS  Google Scholar 

  89. Kubicka D, Kaluza L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372:199–208

    Article  CAS  Google Scholar 

  90. Murata K, Liu YY, Inaba M, Takahara I (2010) Production of synthetic diesel by hydrotreatment of Jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy Fuel 24:2404–2409

    Article  CAS  Google Scholar 

  91. Morgan T, Grubb D, Santillan-Jimenez E, Crocker M (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53:820–829

    Article  CAS  Google Scholar 

  92. Patil TA, Raghunathan TS, Shankar HS (1988) Thermal hydrolysis of vegetable oils and fats. 2. Hydrolysis in continuous stirred tank reactor. Ind Eng Chem Res 27:735–739

    Article  CAS  Google Scholar 

  93. Yow CJ, Liew KY (1999) Hydrolysis of palm oil catalyzed by macroporous cation-exchanged resin. J Am Oil Chem Soc 76:529–533

    Article  CAS  Google Scholar 

  94. Yow CJ, Liew KY (2002) Hydrolysis of palm olein catalyzed by solid heteropolyacids. J Am Oil Chem Soc 79:357–361

    Article  CAS  Google Scholar 

  95. Ngaosuwan K, Lotero E, Suwannakarn K, Goodwin JG Jr, Praserthdam P (2009) Hydrolysis of triglycerides using solid acid catalysts. Ind Eng Chem Res 48:4757–4767

    Article  CAS  Google Scholar 

  96. Ngaosuwan K, Mo XH, Goodwin JG Jr, Praserthdam P (2010) Reaction kinetics and mechanisms for hydrolysis and transesterification of triglycerides on tungstated zirconia. Top Catal 53:783–794

    Article  CAS  Google Scholar 

  97. Pouilloux Y, Piccirilli A, Barrault J (1996) Selective hydrogenation into oleyl alcohol of methyl oleate in the presence of Ru-Sn/Al2O3 catalysts. J Mol Catal A 108:161–166

    Article  CAS  Google Scholar 

  98. Miyake T, Makino T, Taniguchi S, Watanuki H, Niki T, Shimizu S, Kojima Y, Sano M (2009) Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru-Sn and Rh-Sn catalysts. Appl Catal A Gen 364:108–112

    Article  CAS  Google Scholar 

  99. Pouilloux Y, Auin F, Guimon C, Barrault J (1998) Hydrogenation of fatty esters over ruthenium–tin catalysts; characterization and identification of active centers. J Catal 176:215–224

    Article  CAS  Google Scholar 

  100. Camblor MA, Corma A, Iborra A, Miquel A, Primo J, Valencia S (1997) Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: the role of crystal size and hydrophobicity. J Catal 172:76–84

    Article  CAS  Google Scholar 

  101. Climent MJ, Corma A, Iborra A, Miquel S, Primo J, Rey F (1999) Mesoporous materials as catalysts for the production of chemicals: synthesis of alkyl glucosides on MCM-41. J Catal 183:76–82

    Article  CAS  Google Scholar 

  102. Guidotti M, Ravasio N, Psaro R, Gianotti E, Marchese L, Coluccia S (2003) Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chem 5:421–424

    Article  CAS  Google Scholar 

  103. Rios LA, Weckes P, Schuster H, Hoelderich WF (2005) Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. J Catal 232:19–26

    Article  CAS  Google Scholar 

  104. Feliczak A, Walczak K, Wawrzyńczak A, Nowak I (2009) The use of mesoporous molecular sieves containing niobium for the synthesis of vegetable oil-based products. Catal Today 140:23–29

    Article  CAS  Google Scholar 

  105. Sinadinović-Fišer S, Janković M, Petrović ZS (2001) Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J Am Oil Chem Soc 78:725–731

    Article  Google Scholar 

  106. Barrault J, Jerome F (2008) Design of new solid catalysts for the selective conversion of glycerol. Eur J Lipid Sci Technol 110:825–830

    Article  CAS  Google Scholar 

  107. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  CAS  Google Scholar 

  108. Barrault J, Pouilloux Y, Clacens JM, Vanhove C, Bancquart S (2002) Catalysis and fine chemistry. Catal Today 75:177–181

    Article  CAS  Google Scholar 

  109. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  110. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  111. Dimitratos N, Lopez-Sanchez JA, Hutchings GJ (2009) Green catalysis with alternative feedstocks. Top Catal 52:258–268

    Article  CAS  Google Scholar 

  112. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl Catal A Gen 96:217–228

    Article  CAS  Google Scholar 

  113. Abbadi A, Bekkum HV (1996) Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Appl Catal A Gen 148:113–122

    Article  CAS  Google Scholar 

  114. Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl Catal A Gen 127:165

    Article  CAS  Google Scholar 

  115. Fordham P, Garcia R, Besson M, Gallezot P (1995) Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl Catal A Gen 133:L179–L184

    Article  CAS  Google Scholar 

  116. Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141

    Article  CAS  Google Scholar 

  117. Ruppert AM, Meeldijk JD, Kuipers BWM, Ern BH, Weckhuysen BM (2008) Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chem Eur J 14:2016–2024

    Article  CAS  Google Scholar 

  118. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308

    Article  CAS  Google Scholar 

  119. Melero JA, van Grieken R, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuel 21:1782–1791

    Article  CAS  Google Scholar 

  120. Diaz I, Marquez-Alvarez C, Mohino F, Perez-Pariente J, Sastre E (2000) Combined alkyl and sulfonic acid functionalization of MCM-41-type silica: part 2. Esterification of glycerol with fatty acids. J Catal 193:295–302

    Article  CAS  Google Scholar 

  121. Diaz I, Mohino F, Perez-Pariente J, Sastre E (2003) Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Appl Catal A Gen 242:161–169

    Article  CAS  Google Scholar 

  122. Pouilloux Y, Abro S, Vanhove C, Barrault J (1999) Reaction of glycerol with fatty acids in the presence of ion-exchange resins: preparation of monoglycerides. J Mol Catal A 149:243–254

    Article  CAS  Google Scholar 

  123. Bancquart S, Vanhove C, Pouilloux Y, Barrault J (2001) Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity. Appl Catal A Gen 218:1–11

    Article  CAS  Google Scholar 

  124. Barrault J, Bancquart S, Pouilloux Y (2004) Selective glycerol transesterification over mesoporous basic catalysts. Comptes Rendus Chimie 7:593–599

    Article  CAS  Google Scholar 

  125. Corma A, Abd Hamid SB, Iborra S, Velty A (2005) Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J Catal 234:340–347

    Article  CAS  Google Scholar 

  126. Kiatkittipong W, Suwanmanee S, Laosiripojana N, Praserthdam P, Assabumrungrat S (2010) Cleaner gasoline production by using glycerol as fuel extender. Fuel Proc Technol 91:456–460

    Article  CAS  Google Scholar 

  127. Klepacova K, Mravec D, Bajus M (2005) Tert-butylation of glycerol catalysed by ion-exchange resins. Appl Catal A Gen 294:141–147

    Article  CAS  Google Scholar 

  128. Frusteri F, Arena F, Bonura G, Cannilla C, Spadaro L, Di Blasi O (2009) Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel. Appl Catal A Gen 367:77–83

    Article  CAS  Google Scholar 

  129. Klepacova K, Mravec D, Kaszonyi A, Bajus M (2007) Etherification of glycerol and ethylene glycol by isobutylene. Appl Catal A Gen 328:1–13

    Article  CAS  Google Scholar 

  130. Melero JA, Vicente G, Morales G, Paniagua M, Moreno JM, Roldan R, Ezquerro A, Perez C (2008) Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Appl Catal A Gen 346:44–51

    Article  CAS  Google Scholar 

  131. Clacens JM, Pouilloux Y, Barrault J (2002) Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl Catal A Gen 227:181–190

    Article  CAS  Google Scholar 

  132. Ruppert AM, Parvulescu AN, Arias M, Hausoul PJC, Bruijnincx PCX, Gebbink RJMK, Weckhuysen BM (2009) Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over heterogeneous acid catalysts. J Catal 268:251–259

    Article  CAS  Google Scholar 

  133. Gu Y, Azzouzi A, Pouilloux Y, Jerome F, Barrault J (2008) Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals. Green Chem 10:164–167

    Article  CAS  Google Scholar 

  134. Montassier C, Ménézo JC, Hoang LC, Renaud C, Barbier J (1991) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J Mol Catal 70:99–110

    Article  CAS  Google Scholar 

  135. Montassier C, Dumas JM, Granger P, Barbier J (1995) Deactivation of supported copper based catalysts during polyol conversion in aqueous phase. Appl Catal A Gen 121:231–244

    Article  CAS  Google Scholar 

  136. Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, Zheng X (2010) Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour Technol 101:7088–7092

    Article  CAS  Google Scholar 

  137. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281:225–231

    Article  CAS  Google Scholar 

  138. Ma Z, Xiao Z, Van Bokhoven JA, Liang C (2010) A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion. J Mater Chem 20:755–760

    Article  CAS  Google Scholar 

  139. Vasiliadou ES, Heracleous E, Vasalos IA, Lemonidou AA (2009) Ru-based catalysts for glycerol hydrogenolysis—effect of support and metal precursor. Appl Catal B Environ 92:90–99

    Article  CAS  Google Scholar 

  140. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    Article  CAS  Google Scholar 

  141. Balaraju M, Rekha V, Sai Prasad PS, Prabhavathi Devi BLA, Prasad RBN, Lingaiah N (2009) Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl Catal A Gen 354:82–87

    Article  CAS  Google Scholar 

  142. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. Catal Lett 120:307–311

    Article  CAS  Google Scholar 

  143. Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal 251:281–294

    Article  CAS  Google Scholar 

  144. Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt. J Catal 249:328–337

    Article  CAS  Google Scholar 

  145. Jiang T, Zhou Y, Liang S, Liu H, Han B (2009) Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem 11:1000–1006

    Article  CAS  Google Scholar 

  146. Vicente G, Melero JA, Morales G, Paniagua M, Martín E (2010) Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem 12:899–907

    Article  CAS  Google Scholar 

  147. Plasman V, Caulier T, Boulos N (2005) Polyglycerol esters demonstrate superior antifogging properties for films. Plast Addit Compd 7:30–33

    Article  CAS  Google Scholar 

  148. Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal Lett 56:245–247

    Article  CAS  Google Scholar 

  149. Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepción P (2010) Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. J Catal 269:140–149

    Article  CAS  Google Scholar 

  150. Takagaki A, Iwatani K, Nishimura S, Ebitani K (2010) Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem 12:578–581

    Article  CAS  Google Scholar 

  151. Yoo JW, Mouloungui Z (2003) Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate. Stud Surf Sci Catal 146:757–760

    Article  CAS  Google Scholar 

  152. Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J Catal 268:106–114

    Article  CAS  Google Scholar 

  153. Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A 257:149–153

    Article  CAS  Google Scholar 

  154. Patel Y, George J, Pillai SM, Munshi P (2009) Effect of lipophilicity of catalyst in cyclic carbonate formation by transesterification of polyhydric alcohols. Green Chem 11:1056–1060

    Article  CAS  Google Scholar 

  155. Corma A, Navarro MT, Renz M (2003) Lewis acidic Sn(IV) centers—grafted onto MCM-41—as catalytic sites for the Baeyer-Villiger oxidation with hydrogen peroxide. J Catal 219:242–246

    Article  CAS  Google Scholar 

  156. Selvaraj M, Kawi S (2007) Effect of tin precursors and crystallization temperatures on the synthesis of SBA-15 with high levels of tetrahedral tin. J Mater Chem 17:3610–3621

    Article  CAS  Google Scholar 

  157. Deshayes G, Poelmans K, Verbruggen I, Camacho-Camacho C, Dege P, Pinoie V, Martins JC, Piotto M, Biesemans M, Willem R, Dubois P (2005) Polystyrene-supported organotin dichloride as a recyclable catalyst in lactone ring-opening polymerization: assessment and catalysis monitoring by high-resolution magic-angle-spinning NMR spectroscopy. Chemistry 11:4552–4561

    Article  CAS  Google Scholar 

  158. Kerric G, Le Grognec E, Fargeas V, Zammattio F, Quintard JP, Biesemans M, Willem R (2010) Synthesis, characterization and primary evaluation of the synthetic efficiency of supported vinyltins and allyltins. J Organomet Chem 695:1414–1424

    Article  CAS  Google Scholar 

  159. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  160. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  161. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A Gen 199:147–190

    Article  CAS  Google Scholar 

  162. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  CAS  Google Scholar 

  163. Catoire L, Yahyaoui M, Osmont A, Gokalp I (2008) Thermochemistry of compounds formed during fast pyrolysis of lignocellulosic biomass. Energy Fuel 22:4265–4273

    Article  CAS  Google Scholar 

  164. Fernando S, Adhikari A, Chandrapaul C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20:1727–1737

    Article  CAS  Google Scholar 

  165. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1:123–137

    Article  CAS  Google Scholar 

  166. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy’s “top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  167. Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41:1461–1465

    Article  CAS  Google Scholar 

  168. Clark JH (2007) Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol 82:603–609

    Article  CAS  Google Scholar 

  169. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass volume I: results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy (DOE) report by the National Renewable Energy Laboratory. DOE/GO-102004-1992

    Google Scholar 

  170. Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626

    Article  CAS  Google Scholar 

  171. Dacquin JP, Cross HE, Brown DR, Düren T, Williams J, Lee AF, Wilson K (2010) Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chem 12:1383–1391

    Article  CAS  Google Scholar 

  172. Lin WC, Lu AH, Schuth F (2005) Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway. Chem Mater 17:3620–3626

    Article  CAS  Google Scholar 

  173. Zhang B, Ren J, Liu X, Guo Y, Guo Y, Lu G, Wang Y (2010) Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catal Commun 11:629–632

    Article  CAS  Google Scholar 

  174. Clark JH, Budarin V, Dugmore T, Luque R, Macquarrie DJ, Strelko V (2008) Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal Commun 9:1709–1714

    Article  CAS  Google Scholar 

  175. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  176. Delhomme C, Weuster-Botza D, Kuhn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26

    Article  CAS  Google Scholar 

  177. Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14:40–44

    Article  CAS  Google Scholar 

  178. Lourvanij K, Rorrer GL (1993) Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160°C. Ind Eng Chem Res 32:11–19

    Article  CAS  Google Scholar 

  179. Lourvanij K, Rorrer GL (1997) Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders. J Chem Technol Biotechnol 69:35–44

    Article  CAS  Google Scholar 

  180. Moreau C, Durand R, Razigade S, Duhamet J, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–224

    Article  CAS  Google Scholar 

  181. Dias AS, Pillinger M, Valente AA (2005) Liquid phase dehydration of d-xylose in the presence of keggin-type heteropolyacids. Appl Catal A Gen 285:126–131

    Article  CAS  Google Scholar 

  182. Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229:414–423

    Article  CAS  Google Scholar 

  183. Reid L (1956) Levulinic Acid as a Basic Chemical Raw Material. Ind Eng Chem 48:1330–1341

    Article  Google Scholar 

  184. Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25

    Article  CAS  Google Scholar 

  185. Thring RW, Breau J (1996) Hydrocracking of solvolysis lignin in a batch reactor. Fuel 75:795–800

    Article  CAS  Google Scholar 

  186. Saeman JF, Harris DEE (1946) Hydrogenation of lignin over Raney nickel. J Am Chem Soc 68:2507–2509

    Article  CAS  Google Scholar 

  187. Harris EE, Saeman JF, Bergstrom CB (1949) Lignin hydrogenation products. Ind Eng Chem 41:2063–2067

    Article  CAS  Google Scholar 

  188. Sales FG, Maranhão LCA, Lima Filho NM, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62:5386–5391

    Article  CAS  Google Scholar 

  189. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299

    Article  CAS  Google Scholar 

  190. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  191. Zhang J, Deng H, Lin L (2009) Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1−x Cu x O3 (x = 0, 0.1, 0.2). Molecules 14:2747–2757

    Article  CAS  Google Scholar 

  192. Gevert BS, Otterstedt JE, Massoth FE (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31:119–131

    Article  CAS  Google Scholar 

  193. Laurent E, Delmon B (1994) Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Appl Catal A Gen 109:77–96

    Article  CAS  Google Scholar 

  194. Ferrari M, Delmon B, Grange P (2002) Influence of the impregnation order of molybdenum and cobalt in carbon-supported catalysts for hydrodeoxygenation reactions. Carbon 40:497–511

    Article  CAS  Google Scholar 

  195. Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov DY, Novopashina VM, Lebedev MY, Bulavchenko O, Parmon VN (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144:362–366

    Article  CAS  Google Scholar 

  196. De Wild P, Van der Laan R, Kloekhorst A, Heeres E (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustain Energy 28:461–469

    Article  CAS  Google Scholar 

  197. Elliott DC, Hart TR (2009) Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuel 23:631–637

    Article  CAS  Google Scholar 

  198. Sharma RK, Bakhshi NN (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7:306–314

    Article  CAS  Google Scholar 

  199. Vitolo S, Bresci B, Seggiani M, Gallo MG (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80:17

    Article  CAS  Google Scholar 

  200. Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327

    Article  CAS  Google Scholar 

  201. Sheu YHE, Anthony RG, Soltes EJ (1988) Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Proc Technol 19:31–50

    Article  CAS  Google Scholar 

  202. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  203. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48:3987–3990

    Article  CAS  Google Scholar 

  204. Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551

    Article  CAS  Google Scholar 

  205. Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300:2075–2077

    Article  CAS  Google Scholar 

  206. Shabaker JW, Dumesic JA (2004) Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts. Ind Eng Chem Res 43:3105–3112

    Article  CAS  Google Scholar 

  207. Fisk CA, Morgan T, Ji Y, Crocker M, Crofcheck C, Lewis SA (2009) Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A Gen 358:150–156

    Article  CAS  Google Scholar 

  208. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc Technol 86:1059–1070

    Article  CAS  Google Scholar 

  209. Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel 23:2325–2341

    Article  CAS  Google Scholar 

  210. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474

    Article  CAS  Google Scholar 

  211. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979

    Article  CAS  Google Scholar 

  212. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  CAS  Google Scholar 

  213. Roberto Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    Article  CAS  Google Scholar 

  214. Villandier N, Corma A (2010) One pot catalytic conversion of cellulose into biodegradable surfactants. Chem Commun 46:4408–4410

    Article  CAS  Google Scholar 

  215. Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the EPSRC under grants EP/F063423/1 and EP/G007594/1, and the Royal Society for the award of an Industrial Fellowship to KW is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilson, K., Lee, A.F., Dacquin, JP. (2012). Heterogeneous Catalysts for Converting Renewable Feedstocks to Fuels and Chemicals. In: Guczi, L., Erdôhelyi, A. (eds) Catalysis for Alternative Energy Generation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0344-9_7

Download citation

Publish with us

Policies and ethics