Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York
Google Scholar
Walter B, Gruson JF, Monnier G (2008) Diesel engines and fuels: a wide range of evolutions to come. Oil Gas Sci Technol 63:387–393
Google Scholar
Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:1–2
CrossRef
CAS
Google Scholar
http://www.hm-treasury.gov.uk/independent_reviews/stern_review_economicsclimate_change/stern_review_report.cfm. Accessed Jul 2010
Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358
CrossRef
Google Scholar
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232
CAS
CrossRef
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686
CAS
CrossRef
Google Scholar
Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819
CAS
CrossRef
Google Scholar
Lanser AC, List GR, Holloway RK, Mounts YL (1991) FTIR estimation of free fatty acid content in crude oils extracted from damaged soybeans. J Am Oil Chem Soc 68:448–449
CAS
CrossRef
Google Scholar
Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373
CAS
CrossRef
Google Scholar
Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721
CAS
CrossRef
Google Scholar
Kulkarni MG, Dalai AK (2006) Waste cooking oil—an economical source of biodiesel: a review. Ind Eng Chem Res 45:2901–2913
CAS
CrossRef
Google Scholar
Bensmira M, Jiang B, Nsabimana C, Jian T (2007) Effect of lavender and thyme incorporation in sunflower seed oil on its resistance to frying temperatures. Food Res Int 40:341–346
CAS
CrossRef
Google Scholar
Saad B, Ling CW, Jab MS, Lim BP, Ali ASM, Wai WT, Saleh MI (2007) Determination of free fatty acids in palm oil samples using non-aqueous flow injection titrimetric method. Food Chem 102:1407–1414
CAS
CrossRef
Google Scholar
Paik M-J, Kim H, Lee J, Brand J, Kim K-R (2009) Separation of triacylglycerols and free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography. J Chromatogr A 1216:5917–5923
CAS
CrossRef
Google Scholar
Narasimharao K, Lee AF, Wilson K (2007) Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy 1:19–30
Google Scholar
Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766
CAS
CrossRef
Google Scholar
Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502
CAS
CrossRef
Google Scholar
Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91
CAS
CrossRef
Google Scholar
Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670
CAS
CrossRef
Google Scholar
Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96
CAS
CrossRef
Google Scholar
Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643
CAS
CrossRef
Google Scholar
Canakci M, Gerpen JV (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210
CAS
Google Scholar
Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15
CAS
CrossRef
Google Scholar
Dorado MP, Ballesteros E, Almeida JA, Shellet C, Lohrlein HP, Krause R (2002) An alkali-catalysed transesterification process for high free fatty acid waste oils. Trans ASAE 45:525–529
CAS
Google Scholar
Turck R (2002) US patent, 0156305B
Google Scholar
Ma FR, Clements LD, Hanna MA (1999) The effect of mixing on transesterification of beef tallow. Bioresour Technol 69:289–293
CAS
CrossRef
Google Scholar
Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–2109
CAS
CrossRef
Google Scholar
Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670
CrossRef
Google Scholar
Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363
CAS
CrossRef
Google Scholar
Tanabe K, Misono M, Ono Y, Hattori H (1989) Preface. Stud Surf Sci Catal 51:1
CrossRef
Google Scholar
Hattori H (1995) Heterogeneous basic catalysts. Chem Rev 95:537–558
CAS
CrossRef
Google Scholar
Greenwood NN, Earnshaw A (1989) Chemistry of the elements. Pergamon Press, Oxford
Google Scholar
Dacquin JP, Lee AF, Wilson K (2010) Heterogeneous catalysts for biodiesel production. In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals. RSC Publishing, Cambridge
Google Scholar
Albuquerque MCG, Azevedo DCS, Cavalcante CL Jr, Gonsalez JS, Robles JMM, Tost RM, Castellon ER, Lopez AJ, Torres PM (2009) Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. J Mol Catal A Chem 300:19–24
CAS
CrossRef
Google Scholar
Paterson GR, Scarrah WP (1984) Rapeseed oil transesterification by heterogeneous catalysis. J Am Oil Chem Soc 61:1593–1597
CrossRef
Google Scholar
Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 79:249–253
CrossRef
Google Scholar
Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Tost RM, Santamaria J, Fierro JLG (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B Environ 73:317–326
CAS
CrossRef
Google Scholar
Yan S, Lu H, Liang B (2008) Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy Fuel 22:646–651
CAS
CrossRef
Google Scholar
Granados ML, Alonso DM, Sadaba I, Mariscal R, Ocon P (2009) Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: the case of triglycerides methanolysis using CaO. Appl Catal B Environ 89:265–272
CAS
CrossRef
Google Scholar
Demirbas A (2007) Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers Manag 48:937–941
CAS
CrossRef
Google Scholar
Watkins RS, Lee AF, Wilson K (2004) Li-CaO catalysed tri-glycerides transesterification for biodiesel applications. Green Chem 6:335–340
CAS
CrossRef
Google Scholar
MacLeod CS, Harvey AP, Lee AF, Wilson K (2008) Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Eng J 135:63–70
CAS
CrossRef
Google Scholar
Alonso DM, Mariscal R, Granados ML, Torres PM (2009) Biodiesel preparation using Li/CaO catalysts: activation process and homogeneous contribution. Catal Today 143:167
CAS
CrossRef
Google Scholar
Wilson K, Hardacre C, Lee AF, Montero JM, Shellard L (2008) The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem 10:654–659
CAS
CrossRef
Google Scholar
Philipp R, Fujimoto K (1992) FTIR spectroscopic study of CO2 adsorption/desorption on MgO/CaO catalysts. J Phys Chem 96:9035–9038
CAS
CrossRef
Google Scholar
Verziu M, Cojocara B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10:373–381
CAS
CrossRef
Google Scholar
Montero JM, Gai P, Wilson K, Lee AF (2009) Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem 11:265–268
CAS
CrossRef
Google Scholar
Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E (2006) Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res 45:3009–3014
CrossRef
CAS
Google Scholar
Siano D, Nastasi M, Santacesaria E, Di Serio M, Tesser R, Minutillo G, Ledda M, Tenore T (2006) PCT application no. WO2006/050925
Google Scholar
Barakos N, Pasias S, Papayannakos N (2008) Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresour Technol 99:5037–5042
CAS
CrossRef
Google Scholar
Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl Catal A Gen 287:183–190
CAS
CrossRef
Google Scholar
Xi X, Davis RJ (2008) Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol. J Catal 254:190–197
CAS
CrossRef
Google Scholar
Fukuda H, Kondo A, Noda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalysed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15
Google Scholar
Vicente G, Coteron A, Martinez M, Aracil J (1998) Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind Crops Prod 8:29–35
CAS
CrossRef
Google Scholar
Lopez DE, Goodwin JG, Bruce DA, Lotero E (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295:97–105
CAS
CrossRef
Google Scholar
Peters TA, Benes NE, Holmen A, Keurentjes JTF (2006) Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol. Appl Catal A Gen 297:182
CAS
CrossRef
Google Scholar
Suwannakarn K, Lotero E, Goodwin JG Jr, Lu C (2008) Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. J Catal 255:279–286
CAS
CrossRef
Google Scholar
Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81
CAS
CrossRef
Google Scholar
Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217
CAS
CrossRef
Google Scholar
Okuhara T, Mizuno N, Misono M (1996) Catalytic chemistry of heteropoly compounds. Adv Catal 41:113–252
CAS
CrossRef
Google Scholar
Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev 29:269–321
CAS
CrossRef
Google Scholar
Newman AD, Brown DR, Siril P, Lee AF, Wilson K (2006) Structural studies of high dispersion H3PW12O 40/SiO2 solid acid catalysts. Phys Chem Chem Phys 8:2893–2902
CAS
CrossRef
Google Scholar
Newman AD, Lee AF, Wilson K, Young NA (2005) On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catal Lett 102:45–50
CAS
CrossRef
Google Scholar
Okuhara T, Nishimura T, Watanabe H, Misono M (1992) Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions. J Mol Catal 74:247–256
CAS
CrossRef
Google Scholar
Okuhara T, Arai T, Ichiki T, Lee KY, Misono M (1989) Dehydration mechanism of ethanol in the pseudoliquid phase of H3−x
Cs
x
PW12O40. J Mol Catal 55:293–301
CAS
CrossRef
Google Scholar
Narasimharao K, Brown DR, Lee AF, Siril PF, Wilson K (2007) Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J Catal 248:226–234
CAS
CrossRef
Google Scholar
Pesaresi L, Brown DR, Lee AF, Montero JM, Williams H, Wilson K (2009) Cs-doped H4SiW12O40 catalysts for biodiesel applications. Appl Catal A Gen 360:50–58
CAS
CrossRef
Google Scholar
Peterson GR, Sacarrah WP (1984) Rapeseed oil transesterification by heterogeneous catalysis. J Am Oil Chem Soc 61:1593–1597
CAS
CrossRef
Google Scholar
Pizzio LR, Vazquez PG, Caceres CV, Blanco MN, Alesso EN, Erlich MI, Torviso R, Finkielsztein L, Lantano B, Moltrasio GY, Aguirre JM (2004) Influence of the alcohol molecular size in the dehydration reaction catalyzed by carbon-supported heteropolyacids. Catal Lett 93:67–73
CAS
CrossRef
Google Scholar
Bossaert WD, De Vos DE, Van Rhijn W, Bullen J, Grobet PJ, Jacobs PA (1999) Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides. J Catal 182:156–164
CAS
CrossRef
Google Scholar
Wilson K, Lee AF, Macquarrie DJ, Clark JH (2002) Structure and reactivity of sol-gel sulphonic acid silicas. Appl Catal A Gen 228:127–133
CAS
CrossRef
Google Scholar
Chen XR, Ju YH, Mou CY (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737
CAS
CrossRef
Google Scholar
Mbaraka IK, Radu DR, Lin VS-Y, Shanks BH (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336
CAS
CrossRef
Google Scholar
Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl Catal A Gen 1–2:239–248
CrossRef
CAS
Google Scholar
Gaudino MC, Valentin R, Brunel D, Fajula F, Quignard F, Riondel A (2005) Titanium-based solid catalysts for transesterification of methyl-methacrylate by 1-butanol: the homogeneous catalysis contribution. Appl Catal A Gen 2:157–164
CrossRef
CAS
Google Scholar
Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38:56–77
CAS
CrossRef
Google Scholar
Linssen T, Cassiers K, Cool P, Vansant EF (2003) Mesoporous template silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Adv Colloid Interface Sci 103:121–147
CAS
CrossRef
Google Scholar
Davidson A (2002) Modifying the walls of mesoporous silicas prepared by supramolecular-templating. Curr Opin Colloid Interface Sci 7:92–106
CAS
CrossRef
Google Scholar
Galarneau A, Iapichella J, Bonhomme K, Di Renzo F, Kooyman P, Terasaki O, Fajula F (2006) Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater 16:1657–1667
CAS
CrossRef
Google Scholar
Dacquin JP, Dhainaut J, Duprez D, Royer S, Lee AF, Wilson K (2009) An efficient route to highly organized, tunable macroporous-mesoporous alumina. J Am Chem Soc 131:12896–12897
CAS
CrossRef
Google Scholar
Dhainaut J, Dacquin JP, Lee AF, Wilson K (2010) Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem 12:296–303
CAS
CrossRef
Google Scholar
Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons: understanding the reaction routes. Top Catal 52:229–240
CAS
CrossRef
Google Scholar
Czernik S, French RJ, Magrini-Bair KA, Chornet E (2004) The production of hydrogen by steam reforming of trap grease-progress in catalyst performance. Energy Fuel 18:1738–1743
CAS
CrossRef
Google Scholar
Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098
CAS
CrossRef
Google Scholar
Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A Gen 329:120–129
CAS
CrossRef
Google Scholar
Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201
CAS
CrossRef
Google Scholar
Stumborg M, Wong A, Hogan E (1996) Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour Technol 56:13–18
CAS
CrossRef
Google Scholar
Kubicka D, Kaluza L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372:199–208
CAS
CrossRef
Google Scholar
Murata K, Liu YY, Inaba M, Takahara I (2010) Production of synthetic diesel by hydrotreatment of Jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy Fuel 24:2404–2409
CAS
CrossRef
Google Scholar
Morgan T, Grubb D, Santillan-Jimenez E, Crocker M (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53:820–829
CAS
CrossRef
Google Scholar
Patil TA, Raghunathan TS, Shankar HS (1988) Thermal hydrolysis of vegetable oils and fats. 2. Hydrolysis in continuous stirred tank reactor. Ind Eng Chem Res 27:735–739
CAS
CrossRef
Google Scholar
Yow CJ, Liew KY (1999) Hydrolysis of palm oil catalyzed by macroporous cation-exchanged resin. J Am Oil Chem Soc 76:529–533
CAS
CrossRef
Google Scholar
Yow CJ, Liew KY (2002) Hydrolysis of palm olein catalyzed by solid heteropolyacids. J Am Oil Chem Soc 79:357–361
CAS
CrossRef
Google Scholar
Ngaosuwan K, Lotero E, Suwannakarn K, Goodwin JG Jr, Praserthdam P (2009) Hydrolysis of triglycerides using solid acid catalysts. Ind Eng Chem Res 48:4757–4767
CAS
CrossRef
Google Scholar
Ngaosuwan K, Mo XH, Goodwin JG Jr, Praserthdam P (2010) Reaction kinetics and mechanisms for hydrolysis and transesterification of triglycerides on tungstated zirconia. Top Catal 53:783–794
CAS
CrossRef
Google Scholar
Pouilloux Y, Piccirilli A, Barrault J (1996) Selective hydrogenation into oleyl alcohol of methyl oleate in the presence of Ru-Sn/Al2O3 catalysts. J Mol Catal A 108:161–166
CAS
CrossRef
Google Scholar
Miyake T, Makino T, Taniguchi S, Watanuki H, Niki T, Shimizu S, Kojima Y, Sano M (2009) Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru-Sn and Rh-Sn catalysts. Appl Catal A Gen 364:108–112
CAS
CrossRef
Google Scholar
Pouilloux Y, Auin F, Guimon C, Barrault J (1998) Hydrogenation of fatty esters over ruthenium–tin catalysts; characterization and identification of active centers. J Catal 176:215–224
CAS
CrossRef
Google Scholar
Camblor MA, Corma A, Iborra A, Miquel A, Primo J, Valencia S (1997) Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: the role of crystal size and hydrophobicity. J Catal 172:76–84
CAS
CrossRef
Google Scholar
Climent MJ, Corma A, Iborra A, Miquel S, Primo J, Rey F (1999) Mesoporous materials as catalysts for the production of chemicals: synthesis of alkyl glucosides on MCM-41. J Catal 183:76–82
CAS
CrossRef
Google Scholar
Guidotti M, Ravasio N, Psaro R, Gianotti E, Marchese L, Coluccia S (2003) Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chem 5:421–424
CAS
CrossRef
Google Scholar
Rios LA, Weckes P, Schuster H, Hoelderich WF (2005) Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. J Catal 232:19–26
CAS
CrossRef
Google Scholar
Feliczak A, Walczak K, Wawrzyńczak A, Nowak I (2009) The use of mesoporous molecular sieves containing niobium for the synthesis of vegetable oil-based products. Catal Today 140:23–29
CAS
CrossRef
Google Scholar
Sinadinović-Fišer S, Janković M, Petrović ZS (2001) Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J Am Oil Chem Soc 78:725–731
CrossRef
Google Scholar
Barrault J, Jerome F (2008) Design of new solid catalysts for the selective conversion of glycerol. Eur J Lipid Sci Technol 110:825–830
CAS
CrossRef
Google Scholar
Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549
CrossRef
CAS
Google Scholar
Barrault J, Pouilloux Y, Clacens JM, Vanhove C, Bancquart S (2002) Catalysis and fine chemistry. Catal Today 75:177–181
CAS
CrossRef
Google Scholar
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440
CAS
CrossRef
Google Scholar
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30
CAS
CrossRef
Google Scholar
Dimitratos N, Lopez-Sanchez JA, Hutchings GJ (2009) Green catalysis with alternative feedstocks. Top Catal 52:258–268
CAS
CrossRef
Google Scholar
Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl Catal A Gen 96:217–228
CAS
CrossRef
Google Scholar
Abbadi A, Bekkum HV (1996) Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Appl Catal A Gen 148:113–122
CAS
CrossRef
Google Scholar
Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl Catal A Gen 127:165
CAS
CrossRef
Google Scholar
Fordham P, Garcia R, Besson M, Gallezot P (1995) Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl Catal A Gen 133:L179–L184
CAS
CrossRef
Google Scholar
Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141
CAS
CrossRef
Google Scholar
Ruppert AM, Meeldijk JD, Kuipers BWM, Ern BH, Weckhuysen BM (2008) Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chem Eur J 14:2016–2024
CAS
CrossRef
Google Scholar
Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308
CAS
CrossRef
Google Scholar
Melero JA, van Grieken R, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuel 21:1782–1791
CAS
CrossRef
Google Scholar
Diaz I, Marquez-Alvarez C, Mohino F, Perez-Pariente J, Sastre E (2000) Combined alkyl and sulfonic acid functionalization of MCM-41-type silica: part 2. Esterification of glycerol with fatty acids. J Catal 193:295–302
CAS
CrossRef
Google Scholar
Diaz I, Mohino F, Perez-Pariente J, Sastre E (2003) Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Appl Catal A Gen 242:161–169
CAS
CrossRef
Google Scholar
Pouilloux Y, Abro S, Vanhove C, Barrault J (1999) Reaction of glycerol with fatty acids in the presence of ion-exchange resins: preparation of monoglycerides. J Mol Catal A 149:243–254
CAS
CrossRef
Google Scholar
Bancquart S, Vanhove C, Pouilloux Y, Barrault J (2001) Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity. Appl Catal A Gen 218:1–11
CAS
CrossRef
Google Scholar
Barrault J, Bancquart S, Pouilloux Y (2004) Selective glycerol transesterification over mesoporous basic catalysts. Comptes Rendus Chimie 7:593–599
CAS
CrossRef
Google Scholar
Corma A, Abd Hamid SB, Iborra S, Velty A (2005) Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J Catal 234:340–347
CAS
CrossRef
Google Scholar
Kiatkittipong W, Suwanmanee S, Laosiripojana N, Praserthdam P, Assabumrungrat S (2010) Cleaner gasoline production by using glycerol as fuel extender. Fuel Proc Technol 91:456–460
CAS
CrossRef
Google Scholar
Klepacova K, Mravec D, Bajus M (2005) Tert-butylation of glycerol catalysed by ion-exchange resins. Appl Catal A Gen 294:141–147
CAS
CrossRef
Google Scholar
Frusteri F, Arena F, Bonura G, Cannilla C, Spadaro L, Di Blasi O (2009) Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel. Appl Catal A Gen 367:77–83
CAS
CrossRef
Google Scholar
Klepacova K, Mravec D, Kaszonyi A, Bajus M (2007) Etherification of glycerol and ethylene glycol by isobutylene. Appl Catal A Gen 328:1–13
CAS
CrossRef
Google Scholar
Melero JA, Vicente G, Morales G, Paniagua M, Moreno JM, Roldan R, Ezquerro A, Perez C (2008) Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Appl Catal A Gen 346:44–51
CAS
CrossRef
Google Scholar
Clacens JM, Pouilloux Y, Barrault J (2002) Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl Catal A Gen 227:181–190
CAS
CrossRef
Google Scholar
Ruppert AM, Parvulescu AN, Arias M, Hausoul PJC, Bruijnincx PCX, Gebbink RJMK, Weckhuysen BM (2009) Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over heterogeneous acid catalysts. J Catal 268:251–259
CAS
CrossRef
Google Scholar
Gu Y, Azzouzi A, Pouilloux Y, Jerome F, Barrault J (2008) Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals. Green Chem 10:164–167
CAS
CrossRef
Google Scholar
Montassier C, Ménézo JC, Hoang LC, Renaud C, Barbier J (1991) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J Mol Catal 70:99–110
CAS
CrossRef
Google Scholar
Montassier C, Dumas JM, Granger P, Barbier J (1995) Deactivation of supported copper based catalysts during polyol conversion in aqueous phase. Appl Catal A Gen 121:231–244
CAS
CrossRef
Google Scholar
Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, Zheng X (2010) Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour Technol 101:7088–7092
CAS
CrossRef
Google Scholar
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281:225–231
CAS
CrossRef
Google Scholar
Ma Z, Xiao Z, Van Bokhoven JA, Liang C (2010) A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion. J Mater Chem 20:755–760
CAS
CrossRef
Google Scholar
Vasiliadou ES, Heracleous E, Vasalos IA, Lemonidou AA (2009) Ru-based catalysts for glycerol hydrogenolysis—effect of support and metal precursor. Appl Catal B Environ 92:90–99
CAS
CrossRef
Google Scholar
Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J Catal 240:213–221
CAS
CrossRef
Google Scholar
Balaraju M, Rekha V, Sai Prasad PS, Prabhavathi Devi BLA, Prasad RBN, Lingaiah N (2009) Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl Catal A Gen 354:82–87
CAS
CrossRef
Google Scholar
Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. Catal Lett 120:307–311
CAS
CrossRef
Google Scholar
Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal 251:281–294
CAS
CrossRef
Google Scholar
Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt. J Catal 249:328–337
CAS
CrossRef
Google Scholar
Jiang T, Zhou Y, Liang S, Liu H, Han B (2009) Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem 11:1000–1006
CAS
CrossRef
Google Scholar
Vicente G, Melero JA, Morales G, Paniagua M, Martín E (2010) Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem 12:899–907
CAS
CrossRef
Google Scholar
Plasman V, Caulier T, Boulos N (2005) Polyglycerol esters demonstrate superior antifogging properties for films. Plast Addit Compd 7:30–33
CAS
CrossRef
Google Scholar
Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal Lett 56:245–247
CAS
CrossRef
Google Scholar
Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepción P (2010) Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. J Catal 269:140–149
CAS
CrossRef
Google Scholar
Takagaki A, Iwatani K, Nishimura S, Ebitani K (2010) Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem 12:578–581
CAS
CrossRef
Google Scholar
Yoo JW, Mouloungui Z (2003) Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate. Stud Surf Sci Catal 146:757–760
CAS
CrossRef
Google Scholar
Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J Catal 268:106–114
CAS
CrossRef
Google Scholar
Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A 257:149–153
CAS
CrossRef
Google Scholar
Patel Y, George J, Pillai SM, Munshi P (2009) Effect of lipophilicity of catalyst in cyclic carbonate formation by transesterification of polyhydric alcohols. Green Chem 11:1056–1060
CAS
CrossRef
Google Scholar
Corma A, Navarro MT, Renz M (2003) Lewis acidic Sn(IV) centers—grafted onto MCM-41—as catalytic sites for the Baeyer-Villiger oxidation with hydrogen peroxide. J Catal 219:242–246
CAS
CrossRef
Google Scholar
Selvaraj M, Kawi S (2007) Effect of tin precursors and crystallization temperatures on the synthesis of SBA-15 with high levels of tetrahedral tin. J Mater Chem 17:3610–3621
CAS
CrossRef
Google Scholar
Deshayes G, Poelmans K, Verbruggen I, Camacho-Camacho C, Dege P, Pinoie V, Martins JC, Piotto M, Biesemans M, Willem R, Dubois P (2005) Polystyrene-supported organotin dichloride as a recyclable catalyst in lactone ring-opening polymerization: assessment and catalysis monitoring by high-resolution magic-angle-spinning NMR spectroscopy. Chemistry 11:4552–4561
CAS
CrossRef
Google Scholar
Kerric G, Le Grognec E, Fargeas V, Zammattio F, Quintard JP, Biesemans M, Willem R (2010) Synthesis, characterization and primary evaluation of the synthetic efficiency of supported vinyltins and allyltins. J Organomet Chem 695:1414–1424
CAS
CrossRef
Google Scholar
Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889
CAS
CrossRef
Google Scholar
Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73
CAS
CrossRef
Google Scholar
Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A Gen 199:147–190
CAS
CrossRef
Google Scholar
Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598
CAS
CrossRef
Google Scholar
Catoire L, Yahyaoui M, Osmont A, Gokalp I (2008) Thermochemistry of compounds formed during fast pyrolysis of lignocellulosic biomass. Energy Fuel 22:4265–4273
CAS
CrossRef
Google Scholar
Fernando S, Adhikari A, Chandrapaul C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20:1727–1737
CAS
CrossRef
Google Scholar
Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1:123–137
CAS
CrossRef
Google Scholar
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy’s “top 10” revisited. Green Chem 12:539–554
CAS
CrossRef
Google Scholar
Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41:1461–1465
CAS
CrossRef
Google Scholar
Clark JH (2007) Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol 82:603–609
CAS
CrossRef
Google Scholar
Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass volume I: results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy (DOE) report by the National Renewable Energy Laboratory. DOE/GO-102004-1992
Google Scholar
Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626
CAS
CrossRef
Google Scholar
Dacquin JP, Cross HE, Brown DR, Düren T, Williams J, Lee AF, Wilson K (2010) Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chem 12:1383–1391
CAS
CrossRef
Google Scholar
Lin WC, Lu AH, Schuth F (2005) Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway. Chem Mater 17:3620–3626
CrossRef
CAS
Google Scholar
Zhang B, Ren J, Liu X, Guo Y, Guo Y, Lu G, Wang Y (2010) Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catal Commun 11:629–632
CAS
CrossRef
Google Scholar
Clark JH, Budarin V, Dugmore T, Luque R, Macquarrie DJ, Strelko V (2008) Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal Commun 9:1709–1714
CAS
CrossRef
Google Scholar
Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654
CAS
CrossRef
Google Scholar
Delhomme C, Weuster-Botza D, Kuhn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26
CAS
CrossRef
Google Scholar
Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14:40–44
CAS
CrossRef
Google Scholar
Lourvanij K, Rorrer GL (1993) Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160°C. Ind Eng Chem Res 32:11–19
CAS
CrossRef
Google Scholar
Lourvanij K, Rorrer GL (1997) Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders. J Chem Technol Biotechnol 69:35–44
CAS
CrossRef
Google Scholar
Moreau C, Durand R, Razigade S, Duhamet J, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–224
CAS
CrossRef
Google Scholar
Dias AS, Pillinger M, Valente AA (2005) Liquid phase dehydration of d-xylose in the presence of keggin-type heteropolyacids. Appl Catal A Gen 285:126–131
CAS
CrossRef
Google Scholar
Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229:414–423
CAS
CrossRef
Google Scholar
Reid L (1956) Levulinic Acid as a Basic Chemical Raw Material. Ind Eng Chem 48:1330–1341
CrossRef
Google Scholar
Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25
CAS
CrossRef
Google Scholar
Thring RW, Breau J (1996) Hydrocracking of solvolysis lignin in a batch reactor. Fuel 75:795–800
CAS
CrossRef
Google Scholar
Saeman JF, Harris DEE (1946) Hydrogenation of lignin over Raney nickel. J Am Chem Soc 68:2507–2509
CAS
CrossRef
Google Scholar
Harris EE, Saeman JF, Bergstrom CB (1949) Lignin hydrogenation products. Ind Eng Chem 41:2063–2067
CAS
CrossRef
Google Scholar
Sales FG, Maranhão LCA, Lima Filho NM, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62:5386–5391
CAS
CrossRef
Google Scholar
Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299
CAS
CrossRef
Google Scholar
Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599
CAS
CrossRef
Google Scholar
Zhang J, Deng H, Lin L (2009) Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1−x
Cu
x
O3 (x = 0, 0.1, 0.2). Molecules 14:2747–2757
CAS
CrossRef
Google Scholar
Gevert BS, Otterstedt JE, Massoth FE (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31:119–131
CAS
CrossRef
Google Scholar
Laurent E, Delmon B (1994) Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Appl Catal A Gen 109:77–96
CAS
CrossRef
Google Scholar
Ferrari M, Delmon B, Grange P (2002) Influence of the impregnation order of molybdenum and cobalt in carbon-supported catalysts for hydrodeoxygenation reactions. Carbon 40:497–511
CAS
CrossRef
Google Scholar
Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov DY, Novopashina VM, Lebedev MY, Bulavchenko O, Parmon VN (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144:362–366
CAS
CrossRef
Google Scholar
De Wild P, Van der Laan R, Kloekhorst A, Heeres E (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustain Energy 28:461–469
CrossRef
CAS
Google Scholar
Elliott DC, Hart TR (2009) Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuel 23:631–637
CAS
CrossRef
Google Scholar
Sharma RK, Bakhshi NN (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7:306–314
CAS
CrossRef
Google Scholar
Vitolo S, Bresci B, Seggiani M, Gallo MG (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80:17
CAS
CrossRef
Google Scholar
Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327
CAS
CrossRef
Google Scholar
Sheu YHE, Anthony RG, Soltes EJ (1988) Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Proc Technol 19:31–50
CAS
CrossRef
Google Scholar
Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967
CAS
CrossRef
Google Scholar
Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48:3987–3990
CAS
CrossRef
Google Scholar
Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551
CAS
CrossRef
Google Scholar
Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300:2075–2077
CAS
CrossRef
Google Scholar
Shabaker JW, Dumesic JA (2004) Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts. Ind Eng Chem Res 43:3105–3112
CAS
CrossRef
Google Scholar
Fisk CA, Morgan T, Ji Y, Crocker M, Crofcheck C, Lewis SA (2009) Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A Gen 358:150–156
CAS
CrossRef
Google Scholar
Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc Technol 86:1059–1070
CAS
CrossRef
Google Scholar
Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel 23:2325–2341
CAS
CrossRef
Google Scholar
Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474
CAS
CrossRef
Google Scholar
Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979
CAS
CrossRef
Google Scholar
Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600
CAS
CrossRef
Google Scholar
Roberto Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050
CrossRef
CAS
Google Scholar
Villandier N, Corma A (2010) One pot catalytic conversion of cellulose into biodegradable surfactants. Chem Commun 46:4408–4410
CAS
CrossRef
Google Scholar
Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72
CAS
CrossRef
Google Scholar