Skip to main content

Photocatalysis: Toward Solar Fuels and Chemicals

  • Chapter
  • First Online:
Catalysis for Alternative Energy Generation
  • 3063 Accesses

Abstract

Various research groups have focused on the development of catalysts for selective oxidation of hydrocarbons. Generally interesting results have been obtained. Roughly selective photocatalytic oxidation studies can be divided into gas-phase processes and liquid-phase processes, and both will be addressed, using oxidation of propane and cyclohexane, respectively, as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajeshwar K, McConnel R, Licht S (2008) Solar hydrogen generation-toward a renewable energy future. New York, NY, Springer Science and Business Media

    Google Scholar 

  2. MacKay DJC (2009) Sustainable energy: without the hot air. UIT, Cambridge

    Google Scholar 

  3. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103(43):15729–15735. doi:10.1073/pnas.0603395103

    Article  CAS  Google Scholar 

  4. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839. doi:10.1021/ja900023k

    Article  CAS  Google Scholar 

  5. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132(46):16501–16509. doi:10.1021/ja106102b

    Article  CAS  Google Scholar 

  6. Young ER, Nocera DG, Bulovic V (2010) Direct formation of a water oxidation catalyst from thin-film cobalt. Energy Environ Sci 3(11):1726–1728. doi:10.1039/c0ee00177e

    Article  CAS  Google Scholar 

  7. Shibata H, Moulijn JA, Mul G (2008) Enabling electrocatalytic Fischer-Tropsch synthesis from carbon dioxide over copper-based electrodes. Catal Lett 123(3–4):186–192. doi:10.1007/s10562-008-9488-3

    Article  CAS  Google Scholar 

  8. Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K (2005) “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim Acta 50(27):5354–5369. doi:10.1016/j.electacta.2005.03.015

    Article  CAS  Google Scholar 

  9. Stankiewicz A, Moulijn JA (2002) Process intensification. Ind Eng Chem Res 41(8):1920–1924. doi:10.1021/ie011025p

    Article  CAS  Google Scholar 

  10. Lu H, Schmidt MA, Jensen KF (2001) Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1(1):22–28. doi:10.1039/b104037p

    Article  CAS  Google Scholar 

  11. Maeda H, Mukae H, Mizuno K (2005) Enhanced efficiency and regioselectivity of intramolecular (2 pi+2 pi) photocycloaddition of 1-cyanonaphthalene derivative using microreactors. Chem Lett 34(1):66–67. doi:10.1246/cl.2005.66

    Article  CAS  Google Scholar 

  12. Van Gerven T, Mul G, Moulijn J, Stankiewicz A (2007) A review of intensification of photocatalytic processes. Chem Eng Process 46(9):781–789. doi:10.1016/j.cep. 2007.05.012

    Article  Google Scholar 

  13. Moulijn JA, Makkee M, van Diepen A (2001) Chemical process technology. John Wiley & Sons Ltd, West Sussex

    Google Scholar 

  14. Du P, Moulijn JA, Mul G (2006) Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields. J Catal 238(2):342–352. doi:10.1016/j.jcat.2005.12.011

    Article  CAS  Google Scholar 

  15. Lin WY, Han HX, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108(47):18269–18273. doi:10.1021/jp040345u

    Article  CAS  Google Scholar 

  16. Atkins PW (1986) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  17. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177. doi:10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  18. Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101(21):4265–4275

    Article  CAS  Google Scholar 

  19. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  20. Cox PA (1987) The electronic structure and chemistry of solids. Oxford University Press, Oxford

    Google Scholar 

  21. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  22. Kawai T, Sakata T (1980) Photocatalytic decompsoition of gaseous water over TiO2 and TiO2-RuO2 surfaces. Chem Phys Lett 72(1):87–89

    Article  CAS  Google Scholar 

  23. Maeda K, Lu DL, Teramura K, Domen K (2010) Simultaneous photodeposition of rhodium-chromium nanoparticles on a semiconductor powder: structural characterization and application to photocatalytic overall water splitting. Energy Environ Sci 3(4):471–478. doi:10.1039/b915064a

    Article  CAS  Google Scholar 

  24. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M (1981) Photochemical cleavage of water by photocatalysis. Nature 289(5794):158–160

    Article  CAS  Google Scholar 

  25. Kalyanasundaram K, Borgarello E, Gratzel M (1981) Visible light induced water cleavage in CdS dispersions loaded with Pt and RuO2, hole scavenging by RuO2. Helv Chim Acta 64(1):362–366

    Article  CAS  Google Scholar 

  26. Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48(10):1841–1844. doi:10.1002/anie.200805534

    Article  CAS  Google Scholar 

  27. Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027. doi:10.1039/c002074e

    Article  CAS  Google Scholar 

  28. Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46(17):2920–2922. doi:10.1039/b921820c

    Article  CAS  Google Scholar 

  29. Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113(40):17536–17542. doi:10.1021/jp907128k

    Article  CAS  Google Scholar 

  30. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titatium dioxide particles. J Am Chem Soc 104(11):2996–3002

    Article  CAS  Google Scholar 

  31. Kiwi J, Borgarello E, Pelizzetti E, Visca M, Gratzel M (1980) Cyclic water cleavage by visible light—drastic improvement of yield of H2 and O2 with bifunctional redox catalysts. Angew Chem Int Ed 19(8):646–648

    Article  Google Scholar 

  32. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M (1981) Sustained water cleavage by visible light. J Am Chem Soc 103(21):6324–6329

    Article  CAS  Google Scholar 

  33. Maeda K, Xiong AK, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T, Takashima M, Lu DL, Kanehara M, Setoyama T, Teranishi T, Domen K (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49(24):4096–4099. doi:10.1002/anie.201001259

    Article  CAS  Google Scholar 

  34. Sakamoto N, Ohtsuka H, Ikeda T, Maeda K, Lu DL, Kanehara M, Teramura K, Teranishi T, Domen K (2009) Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light. Nanoscale 1(1):106–109. doi:10.1039/b9nr00186g

    Article  CAS  Google Scholar 

  35. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. doi:10.1039/b800489g

    Article  CAS  Google Scholar 

  36. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today 44(1–4):327–332

    Article  CAS  Google Scholar 

  37. Zhang SG, Fujii Y, Yamashita K, Koyano K, Tatsumi T, Anpo M (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 44(7):659–660

    Article  CAS  Google Scholar 

  38. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101(14):2632–2636

    Article  CAS  Google Scholar 

  39. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45(1–4):221–227

    Article  CAS  Google Scholar 

  40. Lin WY, Frei H (2002) Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J Am Chem Soc 124(31):9292–9298. doi:10.1021/ja012477w

    Article  CAS  Google Scholar 

  41. Han HX, Frei H (2008) In situ spectroscopy of water oxidation at Ir oxide nanocluster driven by visible TiOCr charge-transfer chromophore in mesoporous silica. J Phys Chem C 112(41):16156–16159. doi:10.1021/jp803994d

    Article  CAS  Google Scholar 

  42. Lin WY, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. J Am Chem Soc 127(6):1610–1611. doi:10.1021/ja040162l

    Article  CAS  Google Scholar 

  43. Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Arafat A, Moulijn JA, Mul G (2006) Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catal Today 117(1–3):337–342. doi:10.1016/j.cattod.2006.05.058

    Article  CAS  Google Scholar 

  44. Mul G, Wasylenko W, Hamdy MS, Frei H (2008) Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolved ATR-FT-IR spectroscopy. Phys Chem Chem Phys 10(21):3131–3137. doi:10.1039/b800314a

    Article  CAS  Google Scholar 

  45. Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Moulijn JA, Mul G (2006) TiO2 nanoparticles in mesoporous TUD-1: synthesis, characterization and photocatalytic performance in propane oxidation. Chem Eur J 12(2):620–628. doi:10.1002/chem.200500649

    Article  Google Scholar 

  46. Hussain A, Gracia J, Nieuwenhuys B, Niemantsverdriet JW (2010) Chemistry of O- and H-containing species on the (001) surface of anatase TiO2: a DFT study. Chem Phys Chem 11(11):2375–2382. doi:10.1002/cphc.201000185

    Article  CAS  Google Scholar 

  47. Yu JG, Qi LF, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114(30):13118–13125. doi:10.1021/jp104488b

    Article  CAS  Google Scholar 

  48. Vandamme H, Hall WK (1979) Photoassisted decomposition of water at the gas-solid interface on TiO2. J Am Chem Soc 101(15):4373–4374

    Article  CAS  Google Scholar 

  49. Nakamura R, Okamura T, Ohashi N, Imanishi A, Nakato Y (2005) Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions. J Am Chem Soc 127(37):12975–12983. doi:10.1021/ja053252e

    Article  CAS  Google Scholar 

  50. Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–1298. doi:10.1021/ja0388764

    Article  CAS  Google Scholar 

  51. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106(19):5029–5034. doi:10.1021/jp0255482

    Article  CAS  Google Scholar 

  52. Carneiro JT, Savenije TJ, Mul G (2009) Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts. Phys Chem Chem Phys 11(15):2708–2714. doi:10.1039/b820425j

    Article  CAS  Google Scholar 

  53. Carneiro JT, Yang CC, Moma JA, Moulijn JA, Mul G (2009) How gold deposition affects anatase performance in the photo-catalytic oxidation of cyclohexane. Catal Lett 129(1–2):12–19. doi:10.1007/s10562-008-9801-1

    Article  CAS  Google Scholar 

  54. Shaw DJ, Panman MR, Woutersen S (2009) Evidence for cooperative vibrational relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids using infrared pump-probe spectroscopy. Phys Rev Lett 103(22). doi:22740110.1103/PhysRevLett.103.227401

    Google Scholar 

  55. Rasko J, Solymosi F (1994) Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J Phys Chem 98(29):7147–7152

    Article  CAS  Google Scholar 

  56. Rasko J, Solymosi F (1997) Reactions of adsorbed CH3 species with CO2 on Rh/SiO2 catalyst. Catal Lett 46(3–4):153–157

    Article  CAS  Google Scholar 

  57. Yang CC, Yu YH, van der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J Am Chem Soc 132(24):8398–8406. doi:10.1021/ja101318k

    Article  CAS  Google Scholar 

  58. Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl Catal A Gen 335(1):112–120. doi:10.1016/j.apcata.2007.11.022

    Article  CAS  Google Scholar 

  59. Almeida AR, Moulijn JA, Mul G (2008) In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2. J Phys Chem C 112(5):1552–1561. doi:10.1021/jp077143t

    Article  CAS  Google Scholar 

  60. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium-oxide catalysts. J Electroanal Chem 396(1–2):21–26

    Google Scholar 

  61. Telalovic S, Ramanathan A, Mul G, Hanefeld U (2010) TUD-1: synthesis and application of a versatile catalyst, carrier, material. J Mater Chem 20(4):642–658. doi:10.1039/b904193a

    Article  CAS  Google Scholar 

  62. Berg O, Hamdy MS, Maschmeyer T, Moulijn JA, Bonn M, Mul G (2008) On the wavelength-dependent performance of Cr-doped silica in selective photo-oxidation. J Phys Chem C 112(14):5471–5475. doi:10.1021/jp075562k

    Article  CAS  Google Scholar 

  63. Amano F, Yamaguchi T, Tanaka T (2006) J Phys Chem B 110:281–288

    Google Scholar 

  64. Takenaka S, Tanaka T, Funabiki T, Yoshida S (1997) J Chem Soc Faraday Trans 93:4151–4158

    Google Scholar 

  65. Sun H, Blatter F, Frei H (1997) Oxidation of propane to acetone and of ethane to acetaldehyde by O2 in zeolites with complete selectivity. Catal Lett 44(3–4):247–253

    Article  CAS  Google Scholar 

  66. Blatter F, Sun H, Vasenkov S, Frei H (1998) Photocatalyzed oxidation in zeolite cages. Catal Today 41(4):297–309

    Article  CAS  Google Scholar 

  67. Frei H (2006) Selective hydrocarbon oxidation in zeolites. Science 313(5785):309–310. doi:10.1126/science.1128981

    Article  CAS  Google Scholar 

  68. Xu J, Mojet BL, van Ommen JG, Lefferts L (2005) Formation of M2+(O2)(C3H8) species in alkaline-earth-exchanged Y zeolite during propane selective oxidation. J Phys Chem B 109(39):18361–18368. doi:10.1021/jp052941+

    Article  CAS  Google Scholar 

  69. Renckens TJA, Almeida AR, Damen MR, Kreutzer MT, Mul G (2010) Product desorption limitations in selective photocatalytic oxidation. Catal Today 155(3–4):302–310. doi:10.1016/j.cattod.2009.12.002

    Article  CAS  Google Scholar 

  70. Almeida AR, Carneiro JT, Moulijn JA, Mul G (2010) Improved performance of TiO2 in the selective photo-catalytic oxidation of cyclohexane by increasing the rate of desorption through surface silylation. J Catal 273(2):116–124. doi:10.1016/j.jcat.2010.05.006

    Article  CAS  Google Scholar 

  71. Carneiro JT, Almeida AR, Moulijn JA, Mul G (2010) Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity. Phys Chem Chem Phys 12(11):2744–2750. doi:10.1039/b919886e

    Article  CAS  Google Scholar 

  72. Hernandez-Alonso MD, Almeida AR, Moulijn JA, Mul G (2009) Identification of the role of surface acidity in the deactivation of TiO2 in the selective photo-oxidation of cyclohexane. Catal Today 143(3–4):326–333. doi:10.1016/j.cattod.2008.09.025

    Article  CAS  Google Scholar 

  73. Du P, Cameiro JT, Moulijn JA, Mul G (2008) A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Appl Catal A Gen 334(1–2):119–128. doi:10.1016/j.apcata.2007.09.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. J.A. Moulijn, MD, for fruitful discussions and allowing me to explore the field of photocatalysis. Contributions from PhD students Dr. P. Du, Dr. M.S. Hamdy, Dr. J.T. Carneiro, Dr. A.R. Almeida, and Dr. C-C Yang were indispensable for construction of this text. Finally, I would like to thank STW for funding my photocatalysis research in the framework of the VIDI program (DPC.7065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Mul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mul, G. (2012). Photocatalysis: Toward Solar Fuels and Chemicals. In: Guczi, L., Erdôhelyi, A. (eds) Catalysis for Alternative Energy Generation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0344-9_13

Download citation

Publish with us

Policies and ethics