Unexpected Functions of tRNA and tRNA Processing Enzymes

  • Rebecca L. Hurto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 722)


tRNA and tRNA processing enzymes impact more than protein production. Studies have uncovered roles for tRNA in the regulation of transcription, translation and protein turnover. Induced by stress or as a programmed part of development, nonrandom tRNA fragments can guide mRNA cleavage, inhibit translation and promote morphological changes. Similarly, tRNA processing enzymes, such as RNaseP and tRNA aminoacyl-synthetases participate in tasks affecting more than tRNA function (i.e., mRNA function and cellular signaling). Unraveling the complexities of their functions will increase our understanding of how mutations associated with disease impact these functions and the downstream consequences. This chapter focuses on how tRNA and tRNA processing enzymes influence cellular function and RNA-infrastructure via pathways beyond the decoding activities that tRNA are known for.


tRNA Half Unexpected Function KDYH EHHQ tRNA Cleavage tRNA Splice Endonuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cole C, Sobala A, Lu C et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009; 15(12):2147–2160.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee YS, Shibata Y, Malhotra A et al. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22):2639–2649.PubMedCrossRefGoogle Scholar
  3. 3.
    Marshall L, Kenneth NS, White RJ. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 2008; 133(1):78–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290(5806):470–474.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartmann RK, Gossringer M, Spath B et al. The making of tRNAs and more—RNase P and tRNase Z. Prog Mol Biol Transi Sci 2009; 85:319–368.CrossRefGoogle Scholar
  6. 6.
    Hopper AK, Phizicky EM. tRNA transfers to the limelight. Genes Dev 2003; 17(2):162–180.PubMedCrossRefGoogle Scholar
  7. 7.
    Stewart JB, Beckenbach AT. Characterization of mature mitochondrial transcripts in Drosophila and the implications for the tRNA punctuation model in arthropods. Gene 2009; 445(1–2):49–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbezier N, Canino G, Rodor J et al. Processing of a dicistronic tRNA-snoRNA precursor: combined analysis in vitro and in vivo reveals alternate pathways and coupling to assembly of snoRNP. Plant Physiol 2009; 150(3):1598–1610.PubMedCrossRefGoogle Scholar
  9. 9.
    Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94(2):83–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Hiltunen JK, Schonauer MS, Autio KJ et al. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem 2009; 284(14):9011–9015.PubMedCrossRefGoogle Scholar
  11. 11.
    Kruszka K, Barneche F, Guyot R et al. Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 2003; 22(3):621–632.PubMedCrossRefGoogle Scholar
  12. 12.
    Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10(2):215–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 2009; 20(9):436–443.PubMedCrossRefGoogle Scholar
  14. 14.
    Potrykus K, Cashel M. (p)ppGpp: still magical? Annu Rev Microbiol 2008; 62:35–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Yanofsky C. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet 2004; 20(8):367–374.PubMedCrossRefGoogle Scholar
  16. 16.
    Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett;584(2):318–324.Google Scholar
  17. 17.
    Lee SR, Collins K. Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 2005; 280(52):42744–42749.PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson DM, Lu C, Green PJ et al. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008; 14(10):2095–2103.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawaji H, Nakamura M, Takahashi Y et al. Hidden layers of human small RNAs. BMC Genomics 2008; 9:157.PubMedCrossRefGoogle Scholar
  20. 20.
    Jochl C, Rederstorff M, Hertel J et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests anovelmechanismforregulation of protein synthesis. Nucleic Acids Res 2008; 36(8):2677–2689.PubMedCrossRefGoogle Scholar
  21. 21.
    Kawaji H, Hayashizaki Y. Exploration of small RNAs. PLoS Genet 2008; 4(1):e22.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang S, Sun L, Kragler F. The phloem-delivered RNApool contains small noncoding RNAs and interferes with translation. Plant Physiol 2009; 150(1):378–387.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamasaki S, Ivanov P, Hu GF et al. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1):35–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Fu H, Feng J, Liu Q et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583(2):437–442.PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y, Luo J, Zhou H et al. Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 2008; 36(19):6048–6055.PubMedCrossRefGoogle Scholar
  26. 26.
    Hsieh LC, Lin SI, Shih AC et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 2009; 151(4):2120–2132.PubMedCrossRefGoogle Scholar
  27. 27.
    Haiser HJ, Karginov FV, Harmon GJ et al. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 2008; 36(3):732–741.PubMedCrossRefGoogle Scholar
  28. 28.
    Babiarz JE, Ruby JG, Wang Y et al. Mouse ES cells express endogenous shRNAs, siRNAs and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008; 22(20):2773–2785.PubMedCrossRefGoogle Scholar
  29. 29.
    Xiong Y, Steitz TA. A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 2006; 16(1):12–17.PubMedCrossRefGoogle Scholar
  30. 30.
    Takaku H, Nashimoto M. Escherichia coli tRNase Z can shut down growth probably by removing amino acids from aminoacyl-tRNAs. Genes Cells 2008; 13(11):1087–1097.PubMedGoogle Scholar
  31. 31.
    Agris PF, Vendeix FA, Graham WD. tRNAs wobble decoding of the genome: 40 years of modification. J Mol Biol 2007; 366(1):1–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson DM, Parker R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 2009; 185(1):43–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Shigematsu M, Ogawa T, Kido A et al. Cellular and transcriptional responses of yeast to the cleavage of cytosolic tRNAs induced by colicin D. Yeast 2009; 26(12):663–673.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin SI, Chiou TJ. Long-distance movement and differential targeting of microRNA399s. Plant Signal Behav 2008; 3(9):730–732.PubMedCrossRefGoogle Scholar
  35. 35.
    Giles KE, Ghirlando R, Felsenfeld G. Maintenance of a constitutive heterochromatin domain in vertebrates by a Dicer-dependent mechanism. Nat Cell Biol;12(1):94–99; sup pp 91–96.Google Scholar
  36. 36.
    Buhler M, Spies N, Bartel DP et al. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 2008; 15(10):1015–1023.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao Z, Su W, Yuan S et al. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Biochem J 2009; 422(3):483–492.PubMedCrossRefGoogle Scholar
  38. 38.
    Tavtigian SV, Simard J, Teng DH et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27(2):172–180.PubMedCrossRefGoogle Scholar
  39. 39.
    Elbarbary RA, Takaku H, Uchiumi N et al. Modulation of gene expression by human cytosolic tRNase Z(L) through 5′-half-tRNA. PLoS One 2009; 4(6):e5908.PubMedCrossRefGoogle Scholar
  40. 40.
    Nashimoto M. Specific cleavage of target RNAs from HIV-1 with 5′ half tRNA by mammalian tRNA 3′ processing endoribonuclease. RNA 1996; 2(6):523–524.PubMedGoogle Scholar
  41. 41.
    Nashimoto M. Anomalous RNA substrates for mammalian tRNA 3′ processing endoribonuclease. FEBS Lett 2000; 472(2–3): 179–186.PubMedCrossRefGoogle Scholar
  42. 42.
    Elbarbary RA, Takaku H, Tamura M et al. Inhibition of vascular endothelial growth factor expression by TRUE gene silencing. Biochem Biophys Res Commun 2009; 379(4):924–927.PubMedCrossRefGoogle Scholar
  43. 43.
    Takaku H, Minagawa A, Takagi M et al. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 2003; 31(9):2272–2278.PubMedCrossRefGoogle Scholar
  44. 44.
    Thompson HJ, Heimendinger J, Gillette C et al. In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. J Agric Food Chem 2005; 53(15):6126–6132.PubMedCrossRefGoogle Scholar
  45. 45.
    Perwez T, Kushner SR. RNase Z in Escherichia coli plays a significant role in mRNA decay. Mol Microbiol 2006; 60(3):723–737.PubMedCrossRefGoogle Scholar
  46. 46.
    Mascarenhas C, Edwards-Ingram LC, Zeef L et al. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2008; 19(7):2995–3007.PubMedCrossRefGoogle Scholar
  47. 47.
    Saxena SK, Sirdeshmukh R, Ardelt W et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 2002; 277(17):15142–15146.PubMedCrossRefGoogle Scholar
  48. 48.
    Marshall L, White RJ. Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer 2008; 8(12):911–914.PubMedCrossRefGoogle Scholar
  49. 49.
    Sheppard K, Yuan J, Hohn MJ et al. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 2008; 36(6): 1813–1825.PubMedCrossRefGoogle Scholar
  50. 50.
    Sheppard K, Soll D. On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol 2008; 377(3):831–844.PubMedCrossRefGoogle Scholar
  51. 51.
    Barreteau H, Kovac A, Boniface A et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32(2): 168–207.PubMedCrossRefGoogle Scholar
  52. 52.
    Roy H. Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life 2009; 61(10):940–953.PubMedCrossRefGoogle Scholar
  53. 53.
    Francklyn CS, Minajigi A. tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Lett 584(2):366–375.Google Scholar
  54. 54.
    Graciet E, Walter F, Maoileidigh DO et al. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc Natl Acad Sci USA 2009; 106(32):13618–13623.PubMedCrossRefGoogle Scholar
  55. 55.
    Holzmann J, Frank P, Loffler E et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008; 135(3):462–474.PubMedCrossRefGoogle Scholar
  56. 56.
    Ellis JC, Brown JW. The RNase P family. RNA Biol 2009; 6(4):362–369.PubMedCrossRefGoogle Scholar
  57. 57.
    Holzmann J, Rossmanith W. tRNA recognition, processing and disease: hypotheses around an unorthodox type of RNase P in human mitochondria. Mitochondrion 2009; 9(4):284–288.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang SY, He XY, Olpin SE et al. Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism. Proc Natl Acad Sci USA 2009; 106(35):14820–14824.PubMedCrossRefGoogle Scholar
  59. 59.
    Wilusz JE, Spector DL. An unexpected ending: Noncanonical 3′ end processing mechanisms. RNA 2009.Google Scholar
  60. 60.
    Coughlin DJ, Pleiss JA, Walker SC et al. Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci USA 2008; 105(34):12218–12223.PubMedCrossRefGoogle Scholar
  61. 61.
    Ishiguro A, Kassavetis GA, Geiduschek EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 2002; 22(10):3264–3275.PubMedCrossRefGoogle Scholar
  62. 62.
    Jarrous N, Reiner R. Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 2007; 35(11):3519–3524.PubMedCrossRefGoogle Scholar
  63. 63.
    Paushkin SV, Patel M, Furia BS et al. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 2004; 117(3):311–321.PubMedCrossRefGoogle Scholar
  64. 64.
    Budde BS, Namavar Y, Barth PG et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 2008; 40(9): 1113–1118.PubMedCrossRefGoogle Scholar
  65. 65.
    Lambowitz AM, Perlman PS. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci 1990; 15(11):440–444.PubMedCrossRefGoogle Scholar
  66. 66.
    Kapoor M, Otero FJ, Slike BM et al. Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase. Chem Biol 2009; 16(5):531–539.PubMedCrossRefGoogle Scholar
  67. 67.
    Yannay-Cohen N, Carmi-Levy I, Kay G et al. LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 2009; 34(5):603–611.PubMedCrossRefGoogle Scholar
  68. 68.
    Banks GT, Bros-Facer V, Williams HP et al. Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1(G93A) motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice. PLoS One 2009; 4(7):e6218.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee KW, Briggs JM. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Proteins 2004; 54(4):693–704.PubMedCrossRefGoogle Scholar
  70. 70.
    Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008; 9:87–107.PubMedCrossRefGoogle Scholar
  71. 71.
    Antonellis A, Lee-Lin SQ, Wasterlain A et al. Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J Neurosci 2006; 26(41): 10397–10406.PubMedCrossRefGoogle Scholar
  72. 72.
    Zaborske JM, Narasimhan J, Jiang L et al. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 2009; 284(37):25254–25267.PubMedCrossRefGoogle Scholar
  73. 73.
    Kirino Y, Suzuki T. Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol 2005; 2(2):41–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Suzuki T, Kelly VP, Motohashi H et al. Deletion of the selenocysteine tRNA gene in macrophages and liver results in compensatory gene induction of cytoprotective enzymes by Nrf2. J Biol Chem 2008; 283(4):2021–2030.PubMedCrossRefGoogle Scholar
  75. 75.
    Gustavsson M, Ronne H. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA 2008; 14(4):666–674.PubMedCrossRefGoogle Scholar
  76. 76.
    Chernyakov I, Baker MA, Grayhack EJ et al. Chapter 11. Identification and analysis of tRNAs that are degraded in Saccharomyces cerevisiae due to lack of modifications. Methods Enzymol 2008; 449:221–237.PubMedCrossRefGoogle Scholar
  77. 77.
    Huang L, Pookanjanatavip M, Gu X et al. A conserved aspartate of tRNA pseudouridine synthase is essential for activity and aprobable nucleophilic catalyst. Biochemistry (Mosc) 1998; 37(1):344–351.CrossRefGoogle Scholar
  78. 78.
    Frendewey DA, Kladianos DM, Moore VG et al. Loss of tRNA 5-methyluridine methyltransferase and pseudouridine synthetase activities in 5-fluorouracil and l-(tetrahydro-2-furanyl)-5-fluorouracil (ftorafur)-treated Escherichia coli. Biochim Biophys Acta 1982; 697(1):31–40.PubMedGoogle Scholar
  79. 79.
    Kouloulias V, Plataniotis G, Kouvaris J et al. Chemoradiotherapy combined with intracavitary hyperthermia for anal cancer: feasibility and long-term results from a phase II randomized trial. Am J Clin Oncol 2005; 28(1):91–99.PubMedCrossRefGoogle Scholar
  80. 80.
    Hayes DF. Tumor markers for breast cancer. Ann Oncol 1993; 4(10):807–819.PubMedGoogle Scholar
  81. 81.
    Veras I, Rosen EM, Schramm L. Inhibition of RNA polymerase III transcription by BRCA1. J Mol Biol 2009; 387(3):523–531.PubMedCrossRefGoogle Scholar
  82. 82.
    Rosen EM, Fan S, Ma Y. BRCA1 regulation of transcription. Cancer Lett 2006; 236(2): 175–185.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rebecca L. Hurto
    • 1
  1. 1.Department of Molecular GeneticsThe Ohio State UniversityColumbusUSA

Personalised recommendations