Small RNA Discovery and Characterisation in Eukaryotes Using High-Throughput Approaches

  • Helio Pais
  • Simon Moxon
  • Tamas Dalmay
  • Vincent Moulton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 722)

Abstract

RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.

Keywords

Hydroxyl Leukemia Titration Ruby 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms*. Annual review of microbiology 2004; 58:303–328.PubMedCrossRefGoogle Scholar
  2. 2.
    Wagner EG, Simons RW. Antisense RNA control in bacteria, phages and plasmids. Annual review of microbiology 1994; 48:713–742.PubMedCrossRefGoogle Scholar
  3. 3.
    Wassarman KM. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 2002; 109(2):141–144.PubMedCrossRefGoogle Scholar
  4. 4.
    Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5):855–862.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee RC, Feinbaum RI, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5):843–854.PubMedCrossRefGoogle Scholar
  6. 6.
    Mueller E, Gilbert J, Davenport G et al. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 1995; 7(6):1001–1013.CrossRefGoogle Scholar
  7. 7.
    Voinnet O. Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell 1998; 95(2):177–187.PubMedCrossRefGoogle Scholar
  8. 8.
    Nellen W, Lichtenstein C. What makes an mRNA anti-sensitive? Trends Biochem Sci 1993; 18(11):419–423.PubMedCrossRefGoogle Scholar
  9. 9.
    Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806–811.PubMedCrossRefGoogle Scholar
  10. 10.
    Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136(4):642–655.PubMedCrossRefGoogle Scholar
  11. 11.
    Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132(1):9–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Filipowicz W, Jaskiewicz L, Kolb FA et al. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 2005; 15(3):331–341.PubMedCrossRefGoogle Scholar
  13. 13.
    Verdel A, Jia S, Gerber S et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303(5658):672–676.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009; 10(2):94–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 2004; 116(2):281–297.PubMedCrossRefGoogle Scholar
  16. 16.
    Bushati N, Cohen SM. MicroRNA Functions. Annu Rev Cell Dev Biol 2007; 23(1): 175–205.PubMedCrossRefGoogle Scholar
  17. 17.
    Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and Their Regulatory Roles in Plants. Annu Rev Plant Biol 2006; 57:19–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell2004; 16(6):861–865.PubMedCrossRefGoogle Scholar
  19. 19.
    Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development 2005; 132(21):4645–4652.PubMedCrossRefGoogle Scholar
  20. 20.
    Faller M, Guo F. MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta 2008; 1779(11):663–667.PubMedGoogle Scholar
  21. 21.
    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126–139.PubMedCrossRefGoogle Scholar
  22. 22.
    Voinnet O. Origin, Biogenesis and Activity of Plant MicroRNAs. Cell 2009; 136(4):669–687.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5):376–385.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen X. Small RNAs and Their Roles in Plant Development. Annu Rev Cell Dev Biol 2009; 25(1):21–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwach F, Moxon S, Moulton V et al. Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic 2009; 8(6):472–481.PubMedCrossRefGoogle Scholar
  26. 26.
    Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 2008; 9(9):673–678.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009; 25(1):355–376.PubMedCrossRefGoogle Scholar
  28. 28.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by micro RNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102–114.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwab R, Palatnik JF, Riester M et al. Specific Effects of Micro RNAs on the Plant Transcriptome. Dev Cell 2005; 8(4):517–527.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones-Rhoades MW, Bartel DP. Computational identification of plant micro RNAs and their targets, including a stress-induced miRNA. Mol Cell 2004; 14(6):787–799.PubMedCrossRefGoogle Scholar
  31. 31.
    Rajewsky N. MicroRNA target predictions in animals. Nat Genet 2006; 38 Suppl 1(6s):S8–S13.CrossRefGoogle Scholar
  32. 32.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2):215–233.PubMedCrossRefGoogle Scholar
  33. 33.
    Ding XC, Weiler J, Grosshans H. Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends in biotechnology 2009; 27(1):27–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Muralidhar B, Goldstein L, Ng G et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. The Journal of Pathology 2007; 212(4):368–377.PubMedCrossRefGoogle Scholar
  35. 35.
    Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of dicer-like1 in arabidopsis by microRNA-guided mRNA degradation. Current Biology 2003; 13(9):784–789.PubMedCrossRefGoogle Scholar
  36. 36.
    Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008; 14(5):814–821.PubMedCrossRefGoogle Scholar
  37. 37.
    Giraldez AJ, Mishima Y, Rihel J et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312(5770):75–79.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao X, Fjose A, Larsen N et al. Treatment with small interfering RNA affects the microRNA pathway and causes unspecific defects in zebrafish embryos. FEBS Journal 2008; 275(9):2177–2184.PubMedCrossRefGoogle Scholar
  39. 39.
    Marson A, Levine SS, Cole MF et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134(3):521–533.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou X, Ruan J, Wang G et al. Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 2007; 3(3).Google Scholar
  41. 41.
    Megraw M, Baev V, Rusinov V et al. MicroRNA promoter element discovery in Arabidopsis. RNA 2006; 12(9):1612–1619.PubMedCrossRefGoogle Scholar
  42. 42.
    Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 1977; 74(12):5350–5354.PubMedCrossRefGoogle Scholar
  43. 43.
    Becker-André M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res 1989; 17(22):9437–9446.PubMedCrossRefGoogle Scholar
  44. 44.
    Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet 1999; 21(1 Suppl):33–37.PubMedCrossRefGoogle Scholar
  45. 45.
    Reinartz J, Bruyns E, Lin J et al. Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 2002; 1(1):95–104.PubMedCrossRefGoogle Scholar
  46. 46.
    Margulies M, Egholm M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437(7057):376–380.PubMedGoogle Scholar
  47. 47.
    Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5(4):433–438.PubMedCrossRefGoogle Scholar
  48. 48.
    Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005; 309(5741): 1728–1732.PubMedCrossRefGoogle Scholar
  49. 49.
    Willenbrock H, Salomon J, Søkilde R et al. Quantitative miRNA expression analysis: comparingmicroarrays with next-generation sequencing. RNA (New York, N.Y.) 2009; 15(11):2028–2034.Google Scholar
  50. 50.
    Linsen SE, de Wit E, Janssens G et al. Limitations and possibilities of small RNA digital gene expression profiling. Nature methods 2009; 6(7):474–476.PubMedCrossRefGoogle Scholar
  51. 51.
    Lai E, Tomancak P, Williams R et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003; 4(7).Google Scholar
  52. 52.
    Lim LP, Glasner ME, Yekta S et al. Vertebrate microRNA genes. Science 2003; 299(5612).Google Scholar
  53. 53.
    Bonnet E, Wuyts J, Rouzé P et al. Detection of 91 potential conservedplant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 2004; 101(31): 11511–11516.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang X, Zhang J, Li F et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 2005; 21(18):3610–3614.PubMedCrossRefGoogle Scholar
  55. 55.
    Lim LP, Lau NC, Weinstein EG et al. The microRNAs of caenorhabditis elegans. Genes Dev 2003; 17(8):991–1008.PubMedCrossRefGoogle Scholar
  56. 56.
    Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003; 31(13):3429–3431.PubMedCrossRefGoogle Scholar
  57. 57.
    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res2003; 31(13):3406–3415.PubMedCrossRefGoogle Scholar
  58. 58.
    Adai A, Johnson C, Mlotshwa S et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005; 15(1):78–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Barakat A, Wall K, Leebens-Mack J et al. Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J.: for cell and molecular biology 2007;51(6):991–1003.Google Scholar
  60. 60.
    Bentwich I, Avniel A, Karov Y et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37(7):766–770.PubMedCrossRefGoogle Scholar
  61. 61.
    Fahlgren N, Howell MD, Kasschau KD et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PloS one 2007; 2(2):e219.PubMedCrossRefGoogle Scholar
  62. 62.
    Szittya G, Moxon S, Santos DM et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC genomics 2008; 9:593.PubMedCrossRefGoogle Scholar
  63. 63.
    Yao Y, Guo G, Ni Z et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2007; 8(6):R96.PubMedCrossRefGoogle Scholar
  64. 64.
    Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell 2005; 17(6):1658–1673.PubMedCrossRefGoogle Scholar
  65. 65.
    Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science (New York, N.Y.) 2001; 294(5543):853–858.CrossRefGoogle Scholar
  66. 66.
    Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science (New York, N.Y.) 2001; 294(5543):862–864.CrossRefGoogle Scholar
  67. 67.
    Lau NC, Lim LP, Weinstein EG et al. An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science 2001; 294(5543):858–862.PubMedCrossRefGoogle Scholar
  68. 68.
    Berezikov E, Thuemmler F, Laake LW et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38(12):1375–1377.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee H, Chang S, Choudhary S et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 2009; 459(7244):274–277.PubMedCrossRefGoogle Scholar
  70. 70.
    Ghildiyal M, Scitz H, Horwich MD et al. Endogenous siRNAs derived from transposons and mRNAs in drosophila somatic cells. Science 2008; 320(5879):1077–1081.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang XJ, Reyes J, Chua NH et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 2004; 5(9).Google Scholar
  72. 72.
    Lu C, Kulkarni K, Souret FF et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 2006; 16(10): 1276–1288.PubMedCrossRefGoogle Scholar
  73. 73.
    Moxon S, Jing R, Szittya G et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008; 18(10): 1602–1609.PubMedCrossRefGoogle Scholar
  74. 74.
    Glazov EA, Cottee PA, Barris WC et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 2008; 18(6):957–964.PubMedCrossRefGoogle Scholar
  75. 75.
    Kuchenbauer F, Morin RD, Argiropoulos B et al. In-depth characterization of the micro RNA transcriptome in a leukemia progression model. Genome Res 2008; 18(11): 1787–1797.PubMedCrossRefGoogle Scholar
  76. 76.
    Morin RD, O’Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008; 18(4):610–621.PubMedCrossRefGoogle Scholar
  77. 77.
    Goff LA, Davila J, Swerdel MR et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS ONE 2009; 4(9).Google Scholar
  78. 78.
    Cai Y, Yu X, Zhou Q et al. Novel microRNAs in silkworm (Bombyx mori). Funct Integr Genomics 2010; 10(3):405–415.PubMedCrossRefGoogle Scholar
  79. 79.
    Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol 2009; 27(5):455–457.PubMedCrossRefGoogle Scholar
  80. 80.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 2009; 25(14): 1754–1760.CrossRefGoogle Scholar
  81. 81.
    Langmead B, Trapnell C, Pop M et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10(3).Google Scholar
  82. 82.
    Prüfer K, Stenzel U, Dannemann M et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 2008; 24(13): 1530–1531.PubMedCrossRefGoogle Scholar
  83. 83.
    Friedländer MR, Chen W, Adamidi C et al. Discovering micro RNAs from deep sequencing data using miRDeep. Nat Biotech 2008; 26(4):407–415.CrossRefGoogle Scholar
  84. 84.
    Moxon S, Schwach F, Dalmay T et al. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 2008; 24(19):2252–2253.PubMedCrossRefGoogle Scholar
  85. 85.
    Hackenberg M, Sturm M, Langenberger D et al. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucl Acids Res 2009; 37(suppl_2):W68–W76.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang WC, Lin FM, Chang WC et al. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009; 10(1).Google Scholar
  87. 87.
    Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res2010; 38(5):e34.PubMedCrossRefGoogle Scholar
  88. 88.
    Griffiths-Jones S, Saini HK, van Dongen S et al. miRBase: tools for microRNA genomics. Nucleic Acids Res2008; 36(suppl_1):D154–D158.PubMedGoogle Scholar
  89. 89.
    Axtell MJ, Jan C, Rajagopalan R et al. A two-hit trigger for siRNA biogenesis in plants. Cell 2006; 127(3):565–577.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen H, Li Y, Wu S. Bioinformatic prediction and experimental validation of amicroRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA 2007; 104(9):3318–3323.PubMedCrossRefGoogle Scholar
  91. 91.
    Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 2001; 15(2):188–200.PubMedCrossRefGoogle Scholar
  92. 92.
    MacLean D, Moulton V, Studholme DJ. Finding sRNA generative locales from high-throughput sequencing data with NiBLS. BMC Bioinformatics 2010; 11:93.PubMedCrossRefGoogle Scholar
  93. 93.
    Llave C, Kasschau KD, Rector MA et al. Endogenous and silencing-associated small RNAs in plants. The Plant cell 2002; 14(7):1605–1619.PubMedCrossRefGoogle Scholar
  94. 94.
    German MA, Pillay M, Jeong DH et al. Global identification of microRNA—target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008; 26(8):941–946.PubMedCrossRefGoogle Scholar
  95. 95.
    Addo-Quaye C, Eshoo TW, Bartel DP et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Current Biology 2008; 18(10):758–762.PubMedCrossRefGoogle Scholar
  96. 96.
    Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics (Oxford, England) 2009; 25(1):130–131.CrossRefGoogle Scholar
  97. 97.
    Kuhn DE, Martin MM, Feldman DS et al. Experimental validation of miRNAtargets. Methods (San Diego, Calif.) 2008; 44(1):47–54.Google Scholar
  98. 98.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1):15–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5):495–500.PubMedCrossRefGoogle Scholar
  100. 100.
    Kertesz M, Iovino N, Unnerstall U et al. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39(10):1278–1284.PubMedCrossRefGoogle Scholar
  101. 101.
    Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6):1203–1217.PubMedCrossRefGoogle Scholar
  102. 102.
    Baek D, Villen J, Shin C et al. The impact of microRNAs on protein output. Nature 2008; 455(7209):64–71.PubMedCrossRefGoogle Scholar
  103. 103.
    Selbach M, Schwanhäusser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455(7209):58–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 443(7027):769–773.CrossRefGoogle Scholar
  105. 105.
    Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with “antagomirs’. Nature 2005; 438(7068):685–689.PubMedCrossRefGoogle Scholar
  106. 106.
    Elmen J, Lindow M, Silahtaroglu A et al. Antagonism of micro RNA-122 in mice by systemically administered LNA-antimi R leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res2007; 36(4):1153–1162.PubMedCrossRefGoogle Scholar
  107. 107.
    Elmén J, Lindow M, Schütz S et al. LNA-mediated microRNA silencing in nonhuman primates. Nature 2008; 452(7189):896–899.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhao Y, Ransom JF, Li A et al. Dysregulation of cardiogenesis, cardiac conduction and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129(2):303–317.PubMedCrossRefGoogle Scholar
  109. 109.
    Nicolas FE, Pais H, Schwach F et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 2008; 14(12):2513–2520.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang L, Hammell M, Kudlow BA et al. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 2009; 136(18):3043–3055.PubMedCrossRefGoogle Scholar
  111. 111.
    Karginov FV, Conaco C, Xuan Z et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 2007; 104(49):19291–19296.PubMedCrossRefGoogle Scholar
  112. 112.
    Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA 2007; 13(8):1198–1204.PubMedCrossRefGoogle Scholar
  113. 113.
    Hong X, Hammell M, Ambros V et al. Immunopurification of Agol miRNPs selects for a distinct class of microRNA targets. Proc Natl Acad Sci USA 2009; 106(35):15085–15090.PubMedCrossRefGoogle Scholar
  114. 114.
    Chi SW, Zang JB, Mele A et al. Argonaute HITS-CLIP decodes microRNA—mRNA interaction maps. Nature 2009; 460(7254):479–486.PubMedGoogle Scholar
  115. 115.
    Babiarz JE, Ruby JG, Wang Y et al. Mouse ES cells express endogenous shRNAs, siRNAs and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008; 22(20):2773–2785.PubMedCrossRefGoogle Scholar
  116. 116.
    Corcoran DL, Pandit KV, Gordon B et al. Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data. PLoS ONE 2009; 4(4).Google Scholar
  117. 117.
    Martinez NJ, Ow MC, Barrasa MI et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008; 22(18):2535–2549.PubMedCrossRefGoogle Scholar
  118. 118.
    Shalgi R, Lieber D, Oren M et al. Global and local architecture of the mammalian micro RNA-transcription factor regulatory network. PLoS Comput Biol 2007; 3(7):e131.PubMedCrossRefGoogle Scholar
  119. 119.
    White R, Blainey P, Fan HC et al. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics 2009; 10:116.PubMedCrossRefGoogle Scholar
  120. 120.
    Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009; 25(4): 195–203.PubMedCrossRefGoogle Scholar
  121. 121.
    Dai X, Zhao PX. pssRNAMiner: a plant short small RNA regulatory cascade analysis server. Nucleic Acids Res2008; 36(Web Server issue):W114–W118.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Helio Pais
    • 1
  • Simon Moxon
    • 1
  • Tamas Dalmay
    • 1
  • Vincent Moulton
    • 1
  1. 1.School of Computing SciencesUniversity of East AngliaNorwichUK

Personalised recommendations