DNA Topoisomerase I and Illegitimate Recombination

Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

DNA topoisomerase IB (Top1) is a ubiquitous nuclear enzyme whose main role is to remove torsional tensions associated with transcription or replication by introducing transient single-strand breaks in duplex DNA. Once supercoils are suppressed, DNA breaks are rapidly resealed during the religation step of the Top1 reaction. The striking similarity between Top1-mediated religation and the strand transferase activity of various recombinases have suggested that Top1 could be involved in DNA recombination and contribute to the maintenance of genomic integrity. Moreover, Top1 is routinely used as a reagent for molecular cloning (Topo® PCR cloning). In this chapter, we will review the experimental evidences suggesting the potential role of Top1 in illegitimate recombination either via its strand transferase activity, or independently of its religation activity via the regulation of other cellular mechanisms such as transcription or DNA repair.

Keywords

Recombination Cellular Respiration Adduct Gemcitabine Purine 

References

  1. Abremski K, Wierzbicki A, Frommer B, Hoess RH (1986) Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J Biol Chem 261(1): 391–396.PubMedGoogle Scholar
  2. Albor A, Kaku S, Kulesz-Martin M (1998) Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 58(10): 2091–2094.PubMedGoogle Scholar
  3. Andersen AH, Gocke E, Bonven BJ, Nielsen OF, Westergaard O (1985) Topoisomerase I has a strong binding preference for a conserved hexadecameric sequence in the promoter region of the rRNA gene from Tetrahymena pyriformis. Nucleic Acids Res 13(5): 1543–1557.PubMedCentralPubMedGoogle Scholar
  4. Andersen FF, Andersen KE, Kusk M, Frohlich RF, Westergaard O, Andersen AH, Knudsen BR (2003) Recombinogenic flap ligation mediated by human topoisomerase I. J Mol Biol 330(2): 235–246.PubMedGoogle Scholar
  5. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307(5): 1235–1245.PubMedGoogle Scholar
  6. Balestrieri E, Zanier R, Degrassi F (2001) Molecular characterisation of camptothecin-induced mutations at the hprt locus in Chinese hamster cells. Mutat Res 476(1–2): 63–69.PubMedGoogle Scholar
  7. Barrows LR, Holden JA, Anderson M, D’Arpa P (1998) The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication. Mutat Res 408(2): 103–110.PubMedGoogle Scholar
  8. Been MD, Burgess RR, Champoux JJ (1984) Nucleotide sequence preference at rat liver and wheat germ type 1 DNA topoisomerase breakage sites in duplex SV40 DNA. Nucleic Acids Res 12(7): 3097–3114.PubMedCentralPubMedGoogle Scholar
  9. Bjornsti MA, Benedetti P, Viglianti GA, Wang JC (1989) Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res 49(22): 6318–6323.PubMedGoogle Scholar
  10. Bullock P, Champoux JJ, Botchan M (1985) Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science 230(4728): 954–958.PubMedGoogle Scholar
  11. Camilloni G, Di Martino E, Caserta M, di Mauro E (1988) Eukaryotic DNA topoisomerase I reaction is topology dependent. Nucleic Acids Res 16(14): 7071–7085.Google Scholar
  12. Caserta M, Amadei A, Di Mauro E, Camilloni G (1989) In vitro preferential topoisomerization of bent DNA. Nucleic Acids Res 17(21): 8463–8474.PubMedCentralPubMedGoogle Scholar
  13. Champoux JJ (1977) Renaturation of complementary single-stranded DNA circles: complete rewinding facilitated by the DNA untwisting enzyme. Proc Natl Acad Sci USA 74(12): 5328–5332.PubMedCentralPubMedGoogle Scholar
  14. Champoux JJ (1981) DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. J Biol Chem 256(10): 4805–4809.PubMedGoogle Scholar
  15. Chatterjee S, Cheng MF, Trivedi D, Petzold SJ, Berger NA (1989) Camptothecin hypersensitivity in poly(adenosine diphosphate-ribose) polymerase-deficient cell lines. Cancer Commun 1(6): 389–394.PubMedGoogle Scholar
  16. Cheng C, Kussie P, Pavletich N, Shuman S (1998) Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell 92(6): 841–850.PubMedGoogle Scholar
  17. Cheng C, Shuman S (2000a) DNA strand transfer catalyzed by vaccinia topoisomerase: ligation of DNAs containing a 3′ mononucleotide overhang. Nucleic Acids Res 28(9): 1893–1898.PubMedCentralPubMedGoogle Scholar
  18. Cheng C, Shuman S (2000b) Recombinogenic flap ligation pathway for intrinsic repair of topoisomerase IB-induced double-strand breaks. Mol Cell Biol 20(21): 8059–8068.PubMedCentralPubMedGoogle Scholar
  19. Christiansen K, Svejstrup BD, Andersen AH, Westergaard O (1993) Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. J Biol Chem 268: 9690–9701.PubMedGoogle Scholar
  20. Christiansen K, Westergaard O (1992) DNA Repair Mechanisms, Alfred Benzon Symposium 35, Copenhagen.Google Scholar
  21. Christiansen K, Westergaard O (1994) Characterization of intra- and intermolecular DNA ligation mediated by eukaryotic topoisomerase I. J Biol Chem 269: 721–729.PubMedGoogle Scholar
  22. Christman MF, Dietrich FS, Fink GR (1988) Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55(3): 413–425.PubMedGoogle Scholar
  23. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9): 644–654.PubMedGoogle Scholar
  24. Cornet F, Hallet B, Sherratt DJ (1997) Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases. J Biol Chem 272(35): 21927–21931.PubMedGoogle Scholar
  25. Cunha KS, Reguly ML, Graf U, Rodrigues de Andrade HH (2002) Comparison of camptothecin derivatives presently in clinical trials: genotoxic potency and mitotic recombination. Mutagenesis 17(2): 141–147.PubMedGoogle Scholar
  26. D’Arpa P, Beardmore C, Liu LF (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50(21): 6919–6924.PubMedGoogle Scholar
  27. Degrassi F, De Salvia R, Tanzarella C, Palitti F (1989) Induction of chromosomal aberrations and SCE by camptothecin, an inhibitor of mammalian topoisomerase I. Mutat Res 211(1): 125–130.PubMedGoogle Scholar
  28. Desai SD, Zhang H, Rodriguez-Bauman A, Yang JM, Wu X, Gounder MK, Rubin EH, Liu LF (2003) Transcription-dependent degradation of topoisomerase I-DNA covalent complexes. Mol Cell Biol 23(7): 2341–2350.PubMedCentralPubMedGoogle Scholar
  29. Drew Y, Plummer R (2009) PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist Updat 12(6): 153–156.PubMedGoogle Scholar
  30. El-Hizawi S, Lagowski JP, Kulesz-Martin M, Albor A (2002) Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins. Cancer Res 62(11): 3264–3270.PubMedGoogle Scholar
  31. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis, Washington, DC: ASM Press.Google Scholar
  32. Gobert C, Bracco L, Rossi F, Olivier M, Tazi J, Lavelle F, Larsen AK, Riou JF (1996) Modulation of DNA topoisomerase I activity by p53. Biochemistry 35(18): 5778–5786.PubMedGoogle Scholar
  33. Gobert C, Skladanowski A, Larsen AK (1999) The interaction between p53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant p53. Proc Natl Acad Sci USA 96(18): 10355–10360PubMedCentralPubMedGoogle Scholar
  34. Halligan BD, Davis JL, Edwards KA, Liu LF (1982) Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I. J Biol Chem 257(7): 3995–4000.PubMedGoogle Scholar
  35. Hashimoto H, Chatterjee S, Berger NA (1995) Mutagenic activity of topoisomerase I inhibitors. Clin Cancer Res 1(4): 369–376.PubMedGoogle Scholar
  36. Henningfeld KA, Hecht SM (1995) A model for topoisomerase I-mediated insertions and deletions with duplex DNA substrates containing branches, nicks, and gaps. Biochemistry 34: 6120–6129.PubMedGoogle Scholar
  37. Hino O, Ohtake K, Rogler CE (1989) Features of two hepatitis B virus (HBV) DNA integrations suggest mechanisms of HBV integration. J Virol 63(6): 2638–2643.PubMedCentralPubMedGoogle Scholar
  38. Hogan A, Faust EA (1986) Nonhomologous recombination in the parvovirus chromosome: role for a CTATTTCT motif. Mol Cell Biol 6(8): 3005–3009.PubMedCentralPubMedGoogle Scholar
  39. Holm C, Covey JM, Kerrigan D, Pommier Y (1989) Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 49(22): 6365–6368.PubMedGoogle Scholar
  40. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27): 14873–14878.PubMedGoogle Scholar
  41. Hsiang YH, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49(18): 5077–5082.PubMedGoogle Scholar
  42. Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48(7): 1722–1726.PubMedGoogle Scholar
  43. Jaxel C, Capranico G, Kerrigan D, Kohn KW, Pommier Y (1991) Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J Biol Chem 266(30): 20418–20423.PubMedGoogle Scholar
  44. Jaxel C, Kohn KW, Pommier Y (1988) Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin. Nucleic Acids Res 16: 11157–11170.PubMedCentralPubMedGoogle Scholar
  45. Kaufmann WK, Boyer JC, Estabrooks LL, Wilson SJ (1991) Inhibition of replicon initiation in human cells following stabilization of topoisomerase-DNA cleavable complexes. Mol Cell Biol 11(7): 3711–3718.PubMedCentralPubMedGoogle Scholar
  46. Kikuchi Y, Nash HA (1979) Nicking-closing activity associated with bacteriophage lambda int gene product. Proc Natl Acad Sci USA 76(8): 3760–3764.PubMedCentralPubMedGoogle Scholar
  47. Koster DA, Croquette V, Dekker C, Shuman S, Dekker NH (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434(7033): 671–674PubMedGoogle Scholar
  48. Koster DA, Palle K, Bot ES, Bjornsti MA, Dekker NH (2007) Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448(7150): 213–217.PubMedGoogle Scholar
  49. Kretzschmar M, Meisterernst M, Roeder RG (1993) Identification of human DNA topoisomerase I as a cofactor for activator- dependent transcription by RNA polymerase II. Proc Natl Acad Sci USA 90(24): 11508–11512.PubMedCentralPubMedGoogle Scholar
  50. Krogh S, Mortensen UH, Westergaard O, Bonven BJ (1991) Eukaryotic topoisomerase I-DNA interaction is stabilized by helix curvature. Nucleic Acids Res 19(6): 1235–1241.PubMedCentralPubMedGoogle Scholar
  51. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58: 913–949.PubMedGoogle Scholar
  52. Lanza A, Tornaletti S, Rodolfo C, Scanavini MC, Pedrini AM (1996) Human DNA topoisomerase I-mediated cleavages stimulated by ultraviolet light-induced DNA damage. J Biol Chem 271(12): 6978–6986.PubMedGoogle Scholar
  53. Lee MP, Brown SD, Chen A, Hsieh TS (1993) DNA topoisomerase I is essential in Drosophila melanogaster. Proc Natl Acad Sci USA 90(14): 6656–6660.PubMedCentralPubMedGoogle Scholar
  54. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712): 643–649.PubMedGoogle Scholar
  55. Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114(2): 75–85.PubMedGoogle Scholar
  56. Levac P, Moss T (1996) Inactivation of topoisomerase I or II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 micron DNA. Chromosoma 105(4): 250–260.PubMedGoogle Scholar
  57. Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41: 53–77.PubMedGoogle Scholar
  58. Lindahl T (1993) Instability and decay of the primary structure of DNA [see comments]. Nature 362(6422): 709–715.PubMedGoogle Scholar
  59. Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286(5446): 1897–1905.PubMedGoogle Scholar
  60. Lynn RM, Bjornsti MA, Caron PR, Wang JC (1989) Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc Natl Acad Sci USA 86(10): 3559–3563.PubMedCentralPubMedGoogle Scholar
  61. Mao Y, Muller MT (2003) Down modulation of topoisomerase I affects DNA repair efficiency. DNA Repair (Amst) 2(10): 1115–1126.Google Scholar
  62. Mao Y, Okada S, Chang LS, Muller MT (2000) p53 dependence of topoisomerase I recruitment in vivo. Cancer Res 60(16): 4538–4543.PubMedGoogle Scholar
  63. McMilin KD, Stahl MM, Stahl FW (1974) Rec-mediated recombinational hot spot activity in bacteriophage lambda. I. Hot spot activity associated with spi-deletions and bio substitutions. Genetics 77(3): 409–423.PubMedCentralPubMedGoogle Scholar
  64. Merino A, Madden KR, Lane WS, Champoux JJ, Reinberg D (1993) DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365(6443): 227–232.PubMedGoogle Scholar
  65. Miao ZH, Player A, Shankavaram U, Wang YH, Zimonjic DB, Lorenzi PL, Liao ZY, Liu H, Shimura T, Zhang HL, Meng LH, Zhang YW, Kawasaki ES, Popescu NC, Aladjem MI, Goldstein DJ, Weinstein JN, Pommier Y (2007) Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic analyses. Cancer Res 67(18): 8752–8761.PubMedGoogle Scholar
  66. Mielke C, Kalfalah FM, Christensen MO, Boege F (2007) Rapid and prolonged stalling of human DNA topoisomerase I in UVA-irradiated genomic areas. DNA Repair (Amst) 6(12): 1757–1763.Google Scholar
  67. Morham SG, Kluckman KD, Voulomanos N, Smithies O (1996) Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol 16(12): 6804–6809.PubMedCentralPubMedGoogle Scholar
  68. Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134(3): 757–770.PubMedGoogle Scholar
  69. Nash HA, Robertson CA (1989) Heteroduplex substrates for bacteriophage lambda site-specific recombination: cleavage and strand transfer products. Embo J 8(11): 3523–3533.PubMedCentralPubMedGoogle Scholar
  70. Natarajan AT, Palitti F (2008) DNA repair and chromosomal alterations. Mutat Res 657(1): 3–7.PubMedGoogle Scholar
  71. Nunes-Duby SE, Matsumoto L, Landy A (1989) Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination. Cell 59(1): 197–206.PubMedGoogle Scholar
  72. O’Connor PM, Nieves-Neira W, Kerrigan D, Bertrand R, Goldman J, Kohn KW, Pommier Y (1991) S-phase population analysis does not correlate with the cytotoxicity of camptothecin and 10,11-methylenedioxycamptothecin in human colon carcinoma HT-29 cells. Cancer Commun 3(8): 233–240.PubMedGoogle Scholar
  73. Park SY, Cheng YC (2005) Poly(ADP-ribose) polymerase-1 could facilitate the religation of topoisomerase I-linked DNA inhibited by camptothecin. Cancer Res 65(9): 3894–3902.PubMedGoogle Scholar
  74. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6(10): 789–802.PubMedGoogle Scholar
  75. Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109(7): 2894–2902.PubMedCentralPubMedGoogle Scholar
  76. Pommier Y, Barcelo JM, Rao VA, Sordet O, Jobson AG, Thibaut L, Miao ZH, Seiler JA, Zhang H, Marchand C, Agama K, Nitiss JL, Redon C (2006) Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 81: 179–229.PubMedCentralPubMedGoogle Scholar
  77. Pommier Y, Jenkins J, Kohlhagen G, Leteurtre F (1995) DNA recombinase activity of eukaryotic DNA topoisomerase I; Effects of camptothecin and other inhibitors. Mutat Res 337: 135–145.PubMedGoogle Scholar
  78. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5): 421–433.PubMedGoogle Scholar
  79. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KW (2003) Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 532(1–2): 173–203.PubMedGoogle Scholar
  80. Porter SE, Champoux JJ (1989) Mapping in vivo topoisomerase I sites on simian virus 40 DNA: asymmetric distribution of sites on replicating molecules. Mol Cell Biol 9(2): 541–550.PubMedCentralPubMedGoogle Scholar
  81. Pourquier P, Jensen AD, Gong SS, Pommier Y, Rogler CE (1999) Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acids Res 27(8): 1919–1925.PubMedCentralPubMedGoogle Scholar
  82. Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y (1997) Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem 272(42): 26441–26447.PubMedGoogle Scholar
  83. Pourquier P, Pommier Y (2001) Topoisomerase I-mediated DNA damage. Adv Cancer Res 80: 189–216.PubMedGoogle Scholar
  84. Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG (1998) Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA [see comments]. Science 279(5356): 1504–1513.PubMedGoogle Scholar
  85. Reliene R, Bishop AJ, Schiestl RH (2007) Involvement of homologous recombination in carcinogenesis. Adv Genet 58: 67–87.PubMedGoogle Scholar
  86. Ribas G, Xamena N, Creus A, Marcos R (1996) Sister-chromatid exchanges (SCE) induction by inhibitors of DNA topoisomerases in cultured human lymphocytes. Mutat Res 368(3–4): 205–211.PubMedGoogle Scholar
  87. Rossi F, Labourier E, Gallouzi IE, Derancourt J, Allemand E, Divita G, Tazi J (1998) The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity. Nucleic Acids Res 26(12): 2963–2970.PubMedCentralPubMedGoogle Scholar
  88. Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381: 80–82.Google Scholar
  89. Ryan AJ, Squires S, Strutt HL, Evans A, Johnson RT (1994) Different fates of camptothecin-induced replication fork-associated double-strand DNA breaks in mammalian cells. Carcinogenesis 15(5): 823–828.PubMedGoogle Scholar
  90. Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25(16): 7158–7169.PubMedCentralPubMedGoogle Scholar
  91. Sekiguchi J, Cheng C, Shuman S (2000) Resolution of a Holliday junction by vaccinia topoisomerase requires a spacer DNA segment 3′ of the CCCTT/cleavage sites. Nucleic Acids Res 28(14): 2658–2663.PubMedCentralPubMedGoogle Scholar
  92. Sekiguchi J, Seeman NC, Shuman S (1996) Resolution of Holliday junctions by eukaryotic DNA topoisomerase I. Proc Natl Acad Sci USA 93(2): 785–789.PubMedCentralPubMedGoogle Scholar
  93. Shuman S (1989) Vaccinia DNA topoisomerase I promotes illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA 86(10): 3489–3493.PubMedCentralPubMedGoogle Scholar
  94. Shuman S (1991) Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci USA 88(22): 10104–10108.PubMedCentralPubMedGoogle Scholar
  95. Shuman S (1992a) DNA strand transfer reactions catalyzed by vaccinia topoisomerase I. J Biol Chem 267(12): 8620–8627.PubMedGoogle Scholar
  96. Shuman S (1992b) Two classes of DNA end-joining reactions catalyzed by vaccinia topoisomerase I. J Biol Chem 267: 16755–16758.PubMedGoogle Scholar
  97. Shuman S (1994) Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J Biol Chem 269(51): 32678–32684.PubMedGoogle Scholar
  98. Shuman S (1998) Vaccinia virus DNA topoisomerase: a model eukaryotic type IB enzyme. Biochim Biophys Acta 1400(1–3): 321–337.PubMedGoogle Scholar
  99. Shuman S, Bear DG, Sekiguchi J (1997) Intramolecular synapsis of duplex DNA by vaccinia topoisomerase. Embo J 16(21): 6584–6589.PubMedCentralPubMedGoogle Scholar
  100. Shuman S, Golder M, Moss B (1988) Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli. J Biol Chem 263(31): 16401–16407.PubMedGoogle Scholar
  101. Shuman S, Kane EM, Morham SG (1989) Mapping the active-site tyrosine of vaccinia virus DNA topoisomerase I. Proc Natl Acad Sci USA 86(24): 9793–9797.PubMedCentralPubMedGoogle Scholar
  102. Shuman S, Prescott J (1990) Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem 265(29): 17826–17836.PubMedGoogle Scholar
  103. Shykind BM, Kim J, Stewart L, Champoux JJ, Sharp PA (1997) Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev 11(3): 397–407.PubMedGoogle Scholar
  104. Smith HM, Grosovsky AJ (1999) PolyADP-ribose-mediated regulation of p53 complexed with topoisomerase I following ionizing radiation. Carcinogenesis 20(8): 1439–1443.PubMedGoogle Scholar
  105. Soe K, Dianov G, Nasheuer HP, Bohr VA, Grosse F, Stevnsner T (2001) A human topoisomerase I cleavage complex is recognized by an additional human topisomerase I molecule in vitro. Nucleic Acids Res 29(15): 3195–3203.PubMedCentralPubMedGoogle Scholar
  106. Soe K, Hartmann H, Schlott B, Stevnsner T, Grosse F (2002) The tumor suppressor protein p53 stimulates the formation of the human topoisomerase I double cleavage complex in vitro. Oncogene 21(43): 6614–6623.PubMedGoogle Scholar
  107. Sokhansanj BA, Wilson DM, 3 rd (2004) Oxidative DNA damage background estimated by a system model of base excision repair. Free Radic Biol Med 37(3): 422–427.Google Scholar
  108. Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y (2008) Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 381(3): 540–549.PubMedCentralPubMedGoogle Scholar
  109. Sordet O, Nakamura AJ, Redon CE, Pommier Y (2010) DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9(2): 274–278.PubMedGoogle Scholar
  110. Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ, Das BB, Nicolas E, Kohn KW, Bonner WM, Pommier Y (2009) Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10(8): 887–893.PubMedCentralPubMedGoogle Scholar
  111. Sortibran AN, Tellez MG, Rodriguez-Arnaiz R (2006) Genotoxic profile of inhibitors of topoisomerases I (camptothecin) and II (etoposide) in a mitotic recombination and sex-chromosome loss somatic eye assay of Drosophila melanogaster. Mutat Res 604(1–2): 83–90.PubMedGoogle Scholar
  112. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Jr., Stewart L (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 99(24): 15387–15392.PubMedCentralPubMedGoogle Scholar
  113. Stefanis L, Park DS, Friedman WJ, Greene LA (1999) Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 19(15): 6235–6247.PubMedGoogle Scholar
  114. Stephan H, Grosse F, Soe K (2002) Human topoisomerase I cleavage complexes are repaired by a p53-stimulated recombination-like reaction in vitro. Nucleic Acids Res 30(23): 5087–5093.PubMedCentralPubMedGoogle Scholar
  115. Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ (1998) A model for the mechanism of human topoisomerase I see comments. Science 279(5356): 1534–1541.Google Scholar
  116. Stivers JT, Shuman S, Mildvan AS (1994) Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry 33(1): 327–339.PubMedGoogle Scholar
  117. Straub T, Grue P, Uhse A, Lisby M, Knudsen BR, Tange TO, Westergaard O, Boege F (1998) The RNA-splicing factor PSF/p54 controls DNA-topoisomerase I activity by a direct interaction. J Biol Chem 273(41): 26261–26264.PubMedGoogle Scholar
  118. Straub T, Knudsen BR, Boege F (2000) PSF/p54(nrb) stimulates “jumping” of DNA topoisomerase I between separate DNA helices. Biochemistry 39(25): 7552–7558.PubMedGoogle Scholar
  119. Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20(11): 3977–3987.PubMedCentralPubMedGoogle Scholar
  120. Subramanian D, Rosenstein BS, Muller MT (1998) Ultraviolet-induced DNA damage stimulates topoisomerase I-DNA complex formation in vivo: possible relationship with DNA repair. Cancer Res 58(5): 976–984.PubMedGoogle Scholar
  121. Svejstrup JQ, Christiansen K, Andersen AH, Lund K, Westergaard O (1990) Minimal DNA duplex requirements for topoisomerase I-mediated cleavage in vitro. J Biol Chem 265(21): 12529–12535.PubMedGoogle Scholar
  122. Svejstrup JQ, Christiansen K, Gromova II, Andersen AH, Westergaard O (1991) New technique for uncoupling the cleavage and religation reactions of eukaryotic topoisomerase I. The mode of action of camptothecin at a specific recognition site. J Mol Biol 222: 669–678.PubMedGoogle Scholar
  123. Tanizawa A, Kohn KW, Pommier Y (1993) Induction of cleavage in topoisomerase I c-DNA by topoisomerase I enzymes from calf thymus and wheat germ in the presence and absence of camptothecin. Nucleic Acids Res 21(22): 5157–5166.PubMedCentralPubMedGoogle Scholar
  124. Thrash C, Voelkel K, DiNardo S, Sternglanz R (1984) Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase I activity. J Biol Chem 259(3): 1375–1377.PubMedGoogle Scholar
  125. Torres C, Creus A, Marcos R (1998) Genotoxic activity of four inhibitors of DNA topoisomerases in larval cells of Drosophila melanogaster as measured in the wing spot assay. Mutat Res 413(2): 191–203.PubMedGoogle Scholar
  126. Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11(11): 1315–1324.PubMedCentralPubMedGoogle Scholar
  127. Uemura T, Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. Embo J 3(8): 1737–1744.PubMedCentralPubMedGoogle Scholar
  128. Vogel EW, Nivard MJ (1999) A novel method for the parallel monitoring of mitotic recombination and clastogenicity in somatic cells in vivo. Mutat Res 431(1): 141–153.PubMedGoogle Scholar
  129. Wang HP, Rogler CE (1991) Topoisomerase I-mediated integration of hepadnavirus DNA in vitro. J Virol 65(5): 2381–2392.PubMedCentralPubMedGoogle Scholar
  130. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6): 430–440.PubMedGoogle Scholar
  131. Wu J, Liu LF (1997) Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25(21): 4181–4186.PubMedCentralPubMedGoogle Scholar
  132. Xiao SH, Manley JL (1997) Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev 11(3): 334–344.PubMedGoogle Scholar
  133. Xiao SH, Manley JL (1998) Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. Embo J 17(21): 6359–6367.PubMedCentralPubMedGoogle Scholar
  134. Xu CJ, Grainge I, Lee J, Harshey RM, Jayaram M (1998) Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase. Mol Cell 1(5): 729–739.PubMedGoogle Scholar
  135. Yeakley JM, Tronchere H, Olesen J, Dyck JA, Wang HY, Fu XD (1999) Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol 145(3): 447–455.PubMedCentralPubMedGoogle Scholar
  136. Zhu J, Schiestl RH (1996) Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 16(4): 1805–1812.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.INSERM U916 VINCOInstitut Bergonié & University of BordeauxBordeaux cedexFrance
  2. 2.INSERM U916 VINCOInstitut Bergonié & University of BordeauxBordeaux cedexFrance

Personalised recommendations