Skip to main content

Essential Functions of Topoisomerase IIIα in the Nucleus and Mitochondria

  • Chapter
  • First Online:
DNA Topoisomerases and Cancer

Abstract

Topoisomerase IIIα (Top3α) is the essential eukaryotic member of the type IA class of topoisomerases. The absence of Top3α leads to embryonic lethality in fruit flies and mice. One of the main roles of the enzyme in the nucleus appears to be prevention of aberrant recombination by resolving double Holliday junction structures into non-crossover products; this role requires the formation of a complex with functional Bloom’s helicase as well as the structural Rmi proteins. While the exact stoichiometry and mechanism of action of the complex is not yet known, we present two models for how the resolution may occur. In addition, Top3α appears to play a key role in the mitochondria, where it may assist in the segregation of daughter chromosomes; a model for the role of Top3α in late replication intermediates is also presented. In this chapter, we outline the discovery, known functions, and future implications of Top3α in the cell.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett RJ, and Wang JC (2001) Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: Studies of fusion proteins. PNAS 98, 11108–11113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucl. Acids Res. 27, 1767–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broberg K, Hoglund M, Gustafsson C, Bjork J, Ingvar C, Albin M, and Olsson H (2007) Genetic variant of the human homologous recombination-associated gene RMI1 (S455N) impacts the risk of AML/MDS and malignant melanoma. Cancer Letters 258, 38–44

    Article  CAS  PubMed  Google Scholar 

  • Brown TA, Cecconi C, Tkachuk AN, Bustamante C, and Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19, 2466–2476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369–413

    Article  CAS  PubMed  Google Scholar 

  • Chan KL, North PS, and Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. Embo J 26, 3397–3409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang M, Bellaoui M, Zhang C, Desai R, Morozov P, Delgado-Cruzata L, Rothstein R, Freyer GA, Boone C, and Brown GW (2005) RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. Embo J 24, 2024–2033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CF, and Brill SJ (2007) Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J Biol Chem

    Google Scholar 

  • Chu WK, and Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nature Reviews Cancer 9, 644–654

    Article  CAS  PubMed  Google Scholar 

  • DiGate RJ, and Marians KJ (1988) Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem 263, 13366–13373

    CAS  PubMed  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, and Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodwin A, Wang SW, Toda T, Norbury C, and Hickson ID (1999) Topoisomerase III is essential for accurate nuclear division in Schizosaccharomyces pombe. Nucl. Acids Res. 27, 4050–4058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goulaouic H, Roulon T, Flamand O, Grondard L, Lavelle F, and Riou JF (1999) Purification and characterization of human DNA topoisomerase IIIalpha. Nucl. Acids Res. 27, 2443–2450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanai R, Caron PR, and Wang JC (1996) Human TOP3: a single-copy gene encoding DNA topoisomerase III. PNAS 93, 3653–3657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, and Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411

    Article  CAS  PubMed  Google Scholar 

  • Johnson FB, Lombard DB, Neff NF, Mastrangelo M-A, Dewolf W, Ellis NA, Marciniak RA, Yin Y, Jaenisch R, and Guarente L (2000) Association of the Bloom Syndrome Protein with Topoisomerase III{{alpha}} in Somatic and Meiotic Cells. Cancer Res 60, 1162–1167

    CAS  PubMed  Google Scholar 

  • Kim RA, and Wang JC (1992) Identification of yeast TOP3 gene product as a single strand-specific DNA topoisomerase. J Biol Chem 267, 17178–17185

    CAS  PubMed  Google Scholar 

  • Kwan KY, and Wang JC (2001) Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. PNAS 98, 5717–5721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwan KY, Moens PB, and Wang JC (2003) Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase IIIbeta. PNAS 100, 2526–2531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwan KY, Greenwald RJ, Mohanty S, Sharpe AH, Shaw AC, and Wang JC (2007) Development of autoimmunity in mice lacking DNA topoisomerase 3-beta. PNAS 104, 9242–9247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MP, Brown SD, Chen A, and Hsieh TS (1993) DNA topoisomerase I is essential in Drosophila melanogaster. PNAS 90, 6656–6660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, and Wang JC (1998) Mammalian DNA topoisomerase IIIalpha is essential in early embryogenesis. Proc Natl Acad Sci USA 95, 1010–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Kim S-M, Lee J, and Dunphy WG (2004) Absence of BLM leads to accumulation of chromosomal DNA breaks during both unperturbed and disrupted S phases. J. Cell Biol. 165, 801–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, and Brill SJ (2005) Yeast Rmi1/Nce4 Controls Genome Stability as a Subunit of the Sgs1-Top3 Complex. Mol. Cell. Biol. 25, 4476–4487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nurse P, Levine C, Hassing H, and Marians KJ (2003) Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem 278, 8653–8660

    Article  CAS  PubMed  Google Scholar 

  • Plank JL, Chu SH, Pohlhaus JR, Wilson-Sali T, and Hsieh TS (2005) Drosophila melanogaster topoisomerase IIIalpha preferentially relaxes a positively or negatively supercoiled bubble substrate and is essential during development. J Biol Chem 280, 3564–3573

    Article  CAS  PubMed  Google Scholar 

  • Plank JL, Wu J, and Hsieh T-s (2006) Topoisomerase III{alpha} and Bloom’s helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. PNAS 103, 11118–11123

    Google Scholar 

  • Plank JL, and Hsieh TS (2009) Helicase-appended Topoisomerases: New Insight into the Mechanism of Directional Strand-transfer. J Biol Chem 284, 30737–30741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raynard S, Bussen W, and Sung P (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281, 13861–13864

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Nakagawa T, Seki T, Kato G, Tada S, Takahashi Y, Yoshimura A, Kobayashi T, Aoki A, Otsuki M, Habermann FA, Tanabe H, Ishii Y, and Enomoto T (2006) Bloom helicase and DNA topoisomerase IIIalpha are involved in the dissolution of sister chromatids. Mol Cell Biol 26, 6299–6307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seki T, Seki M, Onodera R, Katada T, and Enomoto T (1998) Cloning of cDNA Encoding a Novel Mouse DNA Topoisomerase III (Topo IIIbeta ) Possessing Negatively Supercoiled DNA Relaxing Activity, Whose Message Is Highly Expressed in the Testis. J. Biol. Chem. 273, 28553–28556

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto A, Nishikawa K, Kitao S, and Furuichi Y (2000) Human RecQ5beta, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3alpha and 3beta. Nucleic Acids Res 28, 1647–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh TR, Ali AM, Busygina V, Raynard S, Fan Q, Du C, Andreassen PR, Sung P, and Meetei AR (2008) BLAP18/RMI2, a novel OB-fold containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes & Development, 2856–2868

    Google Scholar 

  • Suski C, and Marians KJ (2008) Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell 30, 779–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, and Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33, 25–35

    Article  CAS  PubMed  Google Scholar 

  • Ui A, Seki M, Ogiwara H, Onodera R, Fukushige S, Onoda F, and Enomoto T (2005) The ability of Sgs1 to interact with DNA topoisomerase III is essential for damage-induced recombination. DNA Repair (Amst) 4, 191–201

    Article  CAS  Google Scholar 

  • Wallis JW, Chrebet G, Brodsky G, Rolfe M, and Rothstein R (1989) A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58, 409–419

    Article  CAS  PubMed  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3, 430–440

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lyu YL, and Wang JC (2002) Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci USA 99, 12114–12119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson-Sali T, and Hsieh T-s (2002a) Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase III{beta}. PNAS 99, 7974–7979

    Google Scholar 

  • Wilson-Sali T, and Hsieh TS (2002b) Generation of double-stranded breaks in hypernegatively supercoiled DNA by Drosophila topoisomerase IIIbeta, a type IA enzyme. J Biol Chem 277, 26865–26871

    Article  CAS  PubMed  Google Scholar 

  • Wilson TM, Chen AD, and Hsieh T (2000) Cloning and characterization of Drosophila topoisomerase IIIbeta. Relaxation of hypernegatively supercoiled DNA. J Biol Chem 275, 1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hou JH, and Hsieh TS (2006a) A new Drosophila gene wh (wuho) with WD40 repeats is essential for spermatogenesis and has maximal expression in hub cells. Dev Biol 296, 219–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Feng L, and Hsieh TS (2010) Drosophila topo III{alpha} is required for the maintenance of mitochondrial genome and male germ-line stem cells. PNAS Epub ahead of print

    Google Scholar 

  • Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, and Hickson ID (2000) The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem 275, 9636–9644

    Google Scholar 

  • Wu L, and Hickson ID (2002) The Bloom’s syndrome helicase stimulates the activity of human topoisomerase III{alpha}. Nucl. Acids Res. 30, 4823–4829

    Google Scholar 

  • Wu L, and Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874

    Google Scholar 

  • Wu L, Bachrati CZ, Ou J, Xu C, Yin J, Chang M, Wang W, Li L, Brown GW, and Hickson ID (2006b) BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci USA 103, 4068–4073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wyckoff E, and Hsieh TS (1988) Functional expression of a Drosophila gene in yeast: genetic complementation of DNA topoisomerase II. PNAS 85, 6272–6276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D, Guo R, Sobeck A, Bachrati CZ, Yang J, Enomoto T, Brown GW, Hoatlin ME, Hickson ID, and Wang W (2008) RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes & Development 22, 2843–2855

    Article  CAS  Google Scholar 

  • Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, and Wang W (2005) BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. Embo J 24, 1465–1476

    Google Scholar 

  • Zhang H, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, and Pommier Y (2001) Human mitochondrial topoisomerase I. Proc Natl Acad Sci USA 98, 10608–10613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Meng LH, and Pommier Y (2007) Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 89, 474–481

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-shih Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, S.H., Wu, J., Hsieh, Ts. (2012). Essential Functions of Topoisomerase IIIα in the Nucleus and Mitochondria. In: Pommier, Y. (eds) DNA Topoisomerases and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0323-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0323-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0322-7

  • Online ISBN: 978-1-4614-0323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics