Abstract

Motor-evoked potentials (MEPs) are the most recent addition to routine intraoperative neurophysiologic monitoring (IOM). Enthusiastic reports of improved outcomes obtained with the use of somatosenory evoked potential (SEP) monitoring, primarily for scoliosis procedures in children and young adults, were quickly followed by case reports of isolated postoperative motor injury without sensory changes [1]. These reports reflected the reality of the anatomy and physiology of motor/sensory pathways. MEP and SEP pathways are located in different topographic and vascular regions of the cerebral cortex, brainstem, and spinal cord. Motor functional pathways are more sensitive to ischemic insults than SEP pathways [2].

Keywords

Basics Motor-evoked potential monitoring Operating room Somatosenory evoked potential Intraoperative neurophysiologic monitoring Central nervous system Motor pathway blood supply Technical aspects Risk 

References

  1. 1.
    Padberg AM, Russo MH, Lenke LG, Bridwell KH, Komanetsky RM. Validity and reliability of spinal cord monitoring in neuromuscular spinal deformity surgery. J Spinal Disord. 1996;9(2):150–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Hickey R, Sloan TB, Roger JN. Functional organization and physiology of the spinal cord. In: Porter SS, editor. Anesthesia for surgery of the spine. New York: McGraw-Hill; 1995. p. 15–39.Google Scholar
  3. 3.
    Fehlings MG, Houlden D, Vajkoczy P. Introduction. Neurosurg Focus. 2009;27(4):E1.PubMedCrossRefGoogle Scholar
  4. 4.
    Pelosi L, Lamb J, Grevitt M, et al. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113(7):1082–91.PubMedCrossRefGoogle Scholar
  5. 5.
    MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2006;28(2):194–203.CrossRefGoogle Scholar
  6. 6.
    Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials [see comment]. Clin Neurophysiol. 2001;112(8):1442–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu B, Cree AK, Lagopoulos J, Cummine JL. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine. 2008;33(10):1100–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Lang EW, Chesnut RM, Beutler AS, Kennelly NA, Renaudin JW. The utility of motor-evoked potential monitoring during intramedullary surgery. Anesth Analg. 1996;83(6):1337–41.PubMedGoogle Scholar
  9. 9.
    Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 1997;41(6):1327–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Sala F, Palandri G, Basso E, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129–1143; discussion 1129–1143.Google Scholar
  11. 11.
    Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Mikuni N, Okada T, Enatsu R, et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106(4):593–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Neuloh G, Pechstein U, Cedzich C, et al. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2004;54(5):1061–1070; discussion 1070–1062.Google Scholar
  14. 14.
    Mikuni N, Okada T, Nishida N, et al. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg. 2007;106(1):128–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Szelenyi A, Langer D, Kothbauer K, et al. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Neuloh G, Schramm J, Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Sala F, Beltramello A, Gerosa M. Neuroprotective role of neurophysiological monitoring during endovascular procedures in the brain and spinal cord. Neurophysiol Clin. 2007;37(6):415–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Shine TS, Harrison BA, De Ruyter ML, et al. Motor and somatosensory evoked potentials: their role in predicting spinal cord ischemia in patients undergoing thoracoabdominal aortic aneurysm repair with regional lumbar epidural cooling. Anesthesiology. 2008;108(4):580–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Woldag H, Gerhold LL, de Groot M, et al. Early prediction of functional outcome after stroke. Brain Inj. 2006;20(10):1047–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Nascimbeni A, Gaffuri A, Imazio P, Nascimbeni A, Gaffuri A, Imazio P. Motor evoked potentials: prognostic value in motor recovery after stroke. Funct Neurol. 2006;21(4):199–203.PubMedGoogle Scholar
  21. 21.
    Crawford ES, Svensson L, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;13:36–45.PubMedCrossRefGoogle Scholar
  22. 22.
    Hickey R, Sloan TB, Rogers JN. Functional organization and physiology of the spinal cord. In: Porter SS, editor. Anesthesia for surgery of the spine. New York: McGraw-Hill; 1995. p. 15–39.Google Scholar
  23. 23.
    Neuloh G, Schramm J. Motor evoked potential monitoring for the surgery of brain tumours and vascular malformations. Adv Tech Stand Neurosurg. 2004;29:171–228.PubMedCrossRefGoogle Scholar
  24. 24.
    Sakuma J, Suzuki K, Sasaki T, Matumoto M, et al. Moniorin and preventing blood flow insufficiency due to clip rotation after the treatment of internal carotid artery aneurysms. J Neurosurg. 2004;100(5):960–2.PubMedCrossRefGoogle Scholar
  25. 25.
    Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery. 1987;20(1):74–93.PubMedGoogle Scholar
  26. 26.
    Toleikis JR, Skelly JP, Carlvin AO, Burkus JK. Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol. 2000;111(4):736–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Szelenyi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motorevoked potential monitoring: stimulation parameters and electrode montages. Clin Neurophysiol. 2007;118(4):1586–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Ubags LH, Kalkman CJ, Been HD. Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery. 1998;43(1):90–94; discussion 94–95.Google Scholar
  29. 29.
    Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Deletis V. Basic methodological principles of multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S147–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu BC, Creek AK, Lagopoulos J, Cummine JL. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine. 2008;33(10):1100–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Lieberman JA, Lyon R, Feiner J, et al. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103(2):316–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26(4):473–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.PubMedGoogle Scholar
  35. 35.
    Jameson L, Sloan T. Monitoring of the brain and spinal cord. Anesthesiol Clin. 2006;24:777–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Leppanen RE, Abnm D, American Society of Neurophysiological. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Wassermann E. Variation in the response to trascranial magnetic brain stimuation in the general population. Clin Neurophysiol. 2002;113(2002):1165–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Sloan T. Evoked potentials. Anesthesia and motor evoked potentials monitoring. San Diego: Academic; 2002.Google Scholar
  39. 39.
    Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, de Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine. 2003;28(10):1043–50.PubMedGoogle Scholar
  40. 40.
    Sutter M, Deletis V, Dvorak J, et al. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S232–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine. 2009;34(14):1504–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Sutter M, Eggspuehler A, Grob D, et al. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur Spine J. 2007;16 Suppl 2:S197–208.PubMedCrossRefGoogle Scholar
  43. 43.
    Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Porchet F, Dvorak J. Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J. 2007;16 Suppl 2:S209–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Sutter MA, Eggspuehler A, Grob D, Porchet F, Jeszenszky D, Dvorak J. Multimodal intraoperative monitoring (MIOM) during 409 lumbosacral surgical procedures in 409 patients. Eur Spine J. 2007;16 Suppl 2:S221–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Kelleher MO, Gamaliel TAN, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8(3):215–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim DH, Zaremski J, Kwon B, et al. Risk factors for false positive transcranial motor evoked potential monitoring alerts during surgical treatment of cervical myelopathy. Spine. 2007;32(6):3041–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Bednarik J, Kadanka Z, Vohanka S, Stejskal L, Vlach O, Schroder R. The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine. 1999;24(15):1593–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27(4):E7.PubMedCrossRefGoogle Scholar
  49. 49.
    Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg. 2007;89(11):2440–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sala F, Lanteri P, Bricolo A, Sala F, Lanteri P, Bricolo A. Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg. 2004;29:133–69.PubMedCrossRefGoogle Scholar
  51. 51.
    Quinones-Hinojosa A, Gulati M, Lyon R, et al. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51(5):1199–1206; discussion 1206–1197.Google Scholar
  52. 52.
    de Haan P, Kalkman CJ, Ubags LH, et al. A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg. 1996;83(5):1022–7.PubMedGoogle Scholar
  53. 53.
    Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Deletis V. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. New York: Academic; 2002. p. 25–51.CrossRefGoogle Scholar
  55. 55.
    Bertani G, Fava E, Casaceli G, et al. Intraoperative mapping and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurg Focus. 2009;27(4):E4.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanai N, Berger M. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Sala F, Krzan MJ, Deletis V, Sala F, Krzan MJ, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst. 2002;18(6–7):264–87.PubMedGoogle Scholar
  58. 58.
    Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 2010;41(6):1327–36.CrossRefGoogle Scholar
  59. 59.
    Szelenyi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–338; discussion 331–338.Google Scholar
  60. 60.
    Szelenyi A, Langer D, Beck J, et al. Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Neurophysiol Clin. 2007;37(6):391–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.PubMedCrossRefGoogle Scholar
  62. 62.
    Edmonds Jr HL, Edmonds Jr HL. Multi-modality neurophysiologic monitoring for cardiac surgery. Heart Surg Forum. 2002;5(3):225–8.PubMedGoogle Scholar
  63. 63.
    Edmonds HL, Rodriguez RA, Audenaert SM, Austin EH, Pollock SM, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth. 1996;10:15–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10(29):3639–49.PubMedCrossRefGoogle Scholar
  65. 65.
    Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18(12):1190–5.PubMedGoogle Scholar
  66. 66.
    Mahmoud M, Sadhasivam S, Salisbury S, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Anschel DJ, Aherne A, Soto RG, et al. Successful intraoperative spinal cord monitoring during scoliosis surgery using a total intravenous anesthetic regimen including dexmedetomidine. J Clin Neurophysiol. 2008;25(1):56–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Koruk S, Mizrak A, Kaya Ugur B, Ilhan O, Baspinar O, Oner U. Propofol/dexmedetomidine and propofol/ketamine combinations for anesthesia in pediatric patients undergoing transcatheter atrial septal defect closure: a prospective randomized study. Clin Ther. 2010;32(4):701–709.Google Scholar
  69. 69.
    Mahmoud M, Sadhasivam S, Sestokas AK, et al. Loss of transcranial electric motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology. 2007;106(2):393–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109(3):417–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Legatt A. Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol. 2002;19(5):454–60.PubMedCrossRefGoogle Scholar
  73. 73.
    MacDonald D. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neuroshysiol. 2002;19(5):416–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Anesthesiology, School of MedicineUniversity of Colorado, University of Colorado HospitalAuroraUSA

Personalised recommendations