Skip to main content

Near-Infrared Spectroscopy

  • Chapter
  • First Online:

Abstract

Cerebral oximetry uses transcranial near-infrared spectroscopy (NIRS) to evaluate changes in cerebral oxygenation noninvasively and continuously. Its operation relies on two basic principles. First, near-infrared light has the capacity to penetrate human tissue, including bone. Second, in these tissues, hemoglobin is the predominant absorbing substance (i.e., chromophore) in the near-infrared range [1]. The binding of oxygen to hemoglobin alters its infrared absorption spectrum. As a result, the concentrations of oxy- and deoxyhemoglobin may be determined by measurement of light absorption at two or more wavelengths. Determination of the absolute concentrations is based on the familiar Lambert–Beer equation and requires the knowledge of the optical path length within the tissue sample volume. Claims regarding the accuracy of time-of-flight and phase-shift technology estimates of path length remain controversial due to the confounding variations in the thickness of skull and cerebrospinal fluid layer, which influence the partial path length of light in the brain, as do blood volume and tissue water content. Despite the continuing uncertainty associated with absolute measurements, a recent study found close agreement between brain oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and NIRS estimates of brain stimulation-induced change in deoxyhemoglobin dynamics [2]. In the absence of independent direct measures of path length and cerebral chromophore concentration as well as the influence of skull thickness on photon migration, the putative “absolute” concentrations of oxy- and deoxyhemoglobin produced by some cerebral oximeters should be viewed as unvalidated estimates [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCormick PW, Stewart M, Goetting MG, et al. Non-invasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med. 1991;19:89–97.

    Article  CAS  Google Scholar 

  2. Huppert TJ, Hoge RD, Diamond SC, et al. A temporal comparison of BOLD, ASL and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage. 2006;29:368–82.

    Article  CAS  Google Scholar 

  3. Okada E, Delpy DT. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl Opt. 2003;42(16):2915–22.

    Article  Google Scholar 

  4. Widman RA, Gonopolsky O. Near-infrared spectroscopy – future aspects. In: Litscher G, Schwarz G, editors. Transcranial Cerebral Oximetry. Lengerich: Pabst Science Publishers; 1997. p. 232–51.

    Google Scholar 

  5. Mchedlishvilli GI. Arterial behavior and blood circulation in the brain. New York: Plenum; 1986. p. 56–7.

    Google Scholar 

  6. Watzman HM, Kurth CD, Montenegro LM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93:586–90.

    Article  Google Scholar 

  7. Kim MB, Ward DS, Cartwright CR, et al. Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput. 2000;16:191–9.

    Article  CAS  Google Scholar 

  8. Davies LK, Janelle GM. All cardiac surgical patients should not have intraoperative cerebral oxygenation monitoring. J Cardiothorac Vasc Anesth. 2006;20:450–5.

    Article  Google Scholar 

  9. Edmonds Jr HL, Ganzel BL, Austin III EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8:147–66.

    Article  Google Scholar 

  10. Ferrari M, Mottola L, Quaresima V. Principles, techniques and limitations of near-infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.

    Article  Google Scholar 

  11. Kazan R, Bracco D, Hemmerling TM. Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. Br J Anaesth. 2009;103:811–6.

    Article  CAS  Google Scholar 

  12. Kalmar AF, Foubert L, Hendrickx JFA, et al. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.

    Article  CAS  Google Scholar 

  13. Nini A, Balberg M, Schecter R, et al. The Pacifica oximeter: a novel spectrophotometric device for monitoring tissue oxygen saturation. Proc Neurocrit Care Soc 2007;(abstract).

    Google Scholar 

  14. Fischer GW, Silvay G. Cerebral oximetry in cardiac and major vascular surgery. HSR Proc Intens Care Cardiovasc Anesth. 2010;2:249–56.

    Google Scholar 

  15. Hayashida M, Kin N, Tomioka T, et al. Cerebral ischaemia during cardiac surgery in children detected by combined monitoring of BIS and near-infrared spectroscopy. Br J Anaesth. 2004;92:662–9.

    Article  CAS  Google Scholar 

  16. Gagnon RE, Macnab AJ, Gagnon FA, et al. Comparison of two spatially resolved NIRS oxygenation indices. J Clin Monit Comput. 2002;17:385–91.

    Article  Google Scholar 

  17. Kress JP, Pohlman AS, Hall JB. Determination of hemoglobin saturation in patients with sickle chest syndrome: a comparison of arterial blood gases and pulse oximetry. Chest. 1999;115:1316–20.

    Article  CAS  Google Scholar 

  18. Kishi K, Kawaguchi M, Yoshitani K, et al. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesth. 2003;15:302–6.

    Article  Google Scholar 

  19. Kaminogo M, Ochi M, Onizuk AM, et al. An additional monitoring of regional cerebral oxygen saturation to HMPAO SPECT study during balloon test occlusion. Stroke. 1999;30:407–13.

    Article  CAS  Google Scholar 

  20. Hongo K, Kobayashi S, Okudera H, et al. Noninvasive cerebral optical spectroscopy: depth-resolved measurement of cerebral haemodynamics using indocyanine green. Neurol Res. 1995;17:89–93.

    CAS  Google Scholar 

  21. Lam JMK, Smielewski P, Al-Rawi P, et al. Internal and external carotid contributions to near-infrared spectroscopy during carotid endarterectomy. Stroke. 1997;28:906–11.

    Article  CAS  Google Scholar 

  22. Cho H, Nemoto EM, Yonas H, et al. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89:533–58.

    Article  CAS  Google Scholar 

  23. Somanetics Corporation: INVOS system safety overview. http://www.somanetics.com/invos-system//infant--neonatal. Accessed June 4, 2010.

  24. Bozkurt A, Onaral B. Safety assessment of near-infrared light emitting diodes for diffuse optical measurements. Biomed Eng Online. 2004;3:9–18.

    Article  Google Scholar 

  25. Misra M, Stark J, Dujovny M, et al. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20:137–41.

    CAS  Google Scholar 

  26. Madsen PL, Secher NH. Near-infrared oximetry of the brain. Prog Neurobiol. 1999;58:541–60.

    Article  CAS  Google Scholar 

  27. Nemoto E, Yonas H, Kassam A. Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med. 2000;28:1052–4.

    Article  CAS  Google Scholar 

  28. Sehic A, Thomas MH. Cerebral oximetry during carotid endarterectomy: signal failure resulting from large frontal sinus defect. J Cardiothorac Vasc Anesth. 2000;14:444–6.

    Article  CAS  Google Scholar 

  29. Rodruguez-Nuñez A, Couciero J, Alonso C, et al. Cerebral oxygenation in children with syncope during head-upright tilt test. Pediatr Cardiol. 1997;18:406–10.

    Article  Google Scholar 

  30. Rao RP, Danduran MJ, Dixon JE, et al. Near-infrared spectroscopy: guided tilt-table testing for syncope. Pediatr Cardiol. 2010;31:208–14.

    Article  Google Scholar 

  31. Wider M, Booth E. Cerebral and somatic regional saturation in neonates. Neonatal Intensive Care. 2010;23:34–8.

    Google Scholar 

  32. Baikoussis NG, Karanikolas M, Siminelakis S, et al. Baseline cerebral ­oximetry values in cardiac and vascular surgery patients: a prospective observational study. J Cardiothorac Surg. 2010;5:41–6.

    Article  Google Scholar 

  33. Abdul-Khaliq H, Troitzsch D, Berger F, et al. Comparison of regional transcranial oximetry with near-infrared spectroscopy (NIRS) and jugular venous bulb oxygen saturation for the monitoring of cerebral oxygenation in infants and children. Biomed Tech. 2000;45:328–35.

    Article  CAS  Google Scholar 

  34. Ferris E, Engel G, Stevens C, et al. The validity of internal jugular venous blood in studies of cerebral metabolism and blood flow in man. Am J Physiol. 1946;147:517–22.

    CAS  Google Scholar 

  35. Croughwell ND, Newman MF, Blumenthal JA, et al. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann Thorac Surg. 1994;58:1072–8.

    Article  Google Scholar 

  36. MacLeod DB, Ikeda K, Keifer J, et al. Validation of the CAS adult cerebral oximeter during hypoxia in healthy volunteers. Anesth Analg. 2006;102 S162.

    Google Scholar 

  37. Han SH, Ham BM, Oh YS, et al. The effect of acute normovolemic haemo­dilution on cerebral oxygenation. Int J Clin Pract. 2004;58:903–6.

    Article  CAS  Google Scholar 

  38. Edmonds Jr HL, Sehic A, Pollock SB, et al. Low cerebrovenous oxygen saturation predicts disorientation. Anesthesiology. 1998;89(3A):A941 (abstract).

    Google Scholar 

  39. Yaron M, Niermeyer S, Lindgren KN, et al. Physiologic responses to moderate altitude exposure among infants and young children. High Alt Med Biol. 2003;4:53–9.

    Article  Google Scholar 

  40. Kussman BD, Wypij D, DiNardo JA, et al. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery. Anesth Analg. 2005;101:1294–300.

    Article  Google Scholar 

  41. Stocchetti N, Pararella A, Bridelli F, et al. Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery. 1994;34:38–44.

    Article  CAS  Google Scholar 

  42. Yao FSF, Tseng CCA, Ho CYA, et al. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.

    Article  Google Scholar 

  43. Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Cardiothorac Vasc Surg. 2006;131:190–7.

    Google Scholar 

  44. Paquet C, Deschamps A, Denault AY, et al. Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth. 2008;22:840–6.

    Article  Google Scholar 

  45. Skhirtladze K, Birkenberg B, Mora B, et al. Cerebral desaturation during cardiac arrest: its relation to arrest duration and left ventricular pump function. Crit Care Med. 2009;37:471–5.

    Article  Google Scholar 

  46. Kytta J, Ohman J, Tanskanen P, et al. Extracranial contribution to cerebral oximetry in brain dead patients: a report of six cases. J Neurosurg Anesthesiol. 1999;11:252–4.

    Article  CAS  Google Scholar 

  47. Schwarz G, Litcher G, Kleinert R, et al. Cerebral oximetry in dead subjects. J Neurosurg Anesth. 1996;8:189–93.

    Article  CAS  Google Scholar 

  48. Maeda H, Fukita K, Oritani S, et al. Evaluation of post-mortem oxymetry with reference to the causes of death. Forensic Sci Int. 1997;87:201–10.

    Article  CAS  Google Scholar 

  49. Litscher G, Schwarz G. Transcranial cerebral oximetry – is it clinically useless at this moment to interpret absolute values obtained by the INVOS 3100 cerebral oximeter? Biomed Tech (Berl). 1997;42:74–7.

    Article  CAS  Google Scholar 

  50. Fenton KN, Freeman K, Glogowski K, et al. The significance of baseline cerebral oxygen saturation in children undergoing congenital heart surgery. Am J Surg. 2005;190:260–3.

    Article  Google Scholar 

  51. Roh Y-J, Choi J-W, Suh J-H, Shim J-Y, Choi I-C. Correlation between pre-operative brain magnetic resonance angiography findings and intra-operative cerebral oxygen saturation during coronary artery bypass graft surgery. J Int Med Res. 2009;37:1772–9.

    Article  Google Scholar 

  52. Bar-Yosef S, Sanders EG, Grocott HP. Asymmetric cerebral near-infrared oximetric measurements during cardiac surgery. J Cardiothorac Vasc Anesth. 2003;17(6):773–4.

    Article  Google Scholar 

  53. Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158–64.

    Article  CAS  Google Scholar 

  54. Brady KM, Lee JK, Kibler KK, et al. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure. Stroke. 2008;39:2531–7.

    Article  Google Scholar 

  55. Lee JK, Kibbler KK, Benni PB, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40:1820–6.

    Article  Google Scholar 

  56. Tyszczuk L, Meek J, Elwell C, et al. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998;102:337–41.

    Article  CAS  Google Scholar 

  57. Joshi B, Brady K, Lee J, Easley B, Panigrahi R, Smielewski P, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;100(2):321–8.

    Article  Google Scholar 

  58. Cullen DJ, Kirby RR. Beach chair position may decrease cerebral perfusion: catastrophic outcomes have occurred. APSF Newslett. 2007;22:25–7.

    Google Scholar 

  59. Brown MM, Wade JPH, Marshall J. Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain. 1985;108:81–93.

    Article  Google Scholar 

  60. Raj A, O’Brien LM, Bertolone SJ, et al. Cerebral oximetry improves detection of sickle cell patients at risk for nocturnal cerebral hypoxia. Pediatr Pulmonol. 2006;41:1088–94.

    Article  Google Scholar 

  61. Tobias JD. Cerebral oximetry monitoring with near-infrared spectroscopy detects alterations in oxygenation before pulse oximetry. J Intensive Care Med. 2008;23:384–7.

    Article  Google Scholar 

  62. Nollert G, Mohnle P, Tassani-Prell P, et al. Determinants of cerebral oxygenation during cardiac surgery. Circulation. 1995;92(Suppl II):327–33.

    Article  Google Scholar 

  63. Raj A, Bertolone SJ, Mangold S, et al. Assessment of cerebral tissue oxygenation in patients with sickle cell disease: effect of transfusion therapy. Am J Pediatr Haematol Oncol. 2004;26:279–83.

    Article  Google Scholar 

  64. Torella F, Haynes SL, McCollum CNB. Cerebral and peripheral near-infrared spectroscopy: an alternative transfusion trigger? Vox Sang. 2002;83:254–7.

    Article  CAS  Google Scholar 

  65. Brian Jr JE. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998;88:1365–86.

    Article  Google Scholar 

  66. Kolb JC, Ainslie PN, Ide K, Poulin MJ. Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Respir Physiol Neurobiol. 2004;141:191–9.

    Article  Google Scholar 

  67. Moritz S, Kasprzak P, Arit M, et al. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy. Anesthesiology. 2007;107:563–9.

    Article  Google Scholar 

  68. Gottlieb EA, Fraser Jr CD, Andropoulos DB, et al. Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth. 2006;16:787–9.

    Article  Google Scholar 

  69. Sakamoto T, Duebener LF, Laussen PC, et al. Cerebral ischemia caused by obstructed superior vena cava cannula is detected by near-infrared spectroscopy. J Cardiothorac Vasc Anesth. 2004;18:293–303.

    Article  Google Scholar 

  70. Kern FH, Ungerleider RM, Reves JG, et al. The effect of altering pump flow rate on cerebral blood flow and metabolism in infants and children. Ann Thorac Surg. 1993;56:1366–72.

    Article  CAS  Google Scholar 

  71. Mutch WAC, Lefevre GR, Thiessen DB, et al. Computer-controlled cardiopulmonary bypass increases jugular venous oxygen saturation during rewarming. Ann Thorac Surg. 1998;65:59–65.

    Article  CAS  Google Scholar 

  72. Patel PM, Drummond JC. Cerebral physiology and effects of anesthetics and techniques. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Philadelphia: Churchill Livingstone; 2005. p. 813–57.

    Google Scholar 

  73. Fassoulaki A, Kaliontzi H, Petropoulos G, et al. The effect of desflurane and sevoflurane on cerebral oximetry under steady-state conditions. Anesth Analg. 2006;102:1830–5.

    Article  CAS  Google Scholar 

  74. Hoge RD, Atkinson J, Gill B, et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA. 1996;96:9403–8.

    Article  Google Scholar 

  75. Bandettini PA, Wong EC, Hinks RS, et al. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.

    Article  CAS  Google Scholar 

  76. Buxton RB, Uludag K, Dubowitz DJ, et al. Modeling the hemodynamic response to brain activation. Neuroimage. 2004;23 Suppl 1:S220–33.

    Article  Google Scholar 

  77. Adelson PD, Nemoto EM, Scheuer M, et al. Non-invasive continuous monitoring of cerebral oxygenation peri-ictally using near-infrared spectroscopy. Epilepsia. 1999;40:1484–9.

    Article  CAS  Google Scholar 

  78. Diaz GA, Cesaron E, Alfonso I, et al. Near infrared spectroscopy in the management of status epilepticus in a young infant. Eur J Paediatr Neurol. 2006;10:19–21.

    Article  Google Scholar 

  79. Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.

    Article  CAS  Google Scholar 

  80. Hoffman GM. Near-infrared spectroscopy should be used for all cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2006;20:606–12.

    Article  Google Scholar 

  81. Schwarz G, Litscher G, Delgado PA, et al. An NIRS matrix for detecting and correcting cerebral oxygen desaturation events during surgery and neurovascular procedures. Neurol Res. 2005;27:423–8.

    Article  Google Scholar 

  82. Kirkpatrick PJ, Lam JMK, Al-Rawi P, et al. Defining thresholds for critical ischemia using near-infrared spectroscopy in the adult brain. J Neurosurg. 1998;89:389–94.

    Article  CAS  Google Scholar 

  83. Edmonds Jr HL, Singer I, Sehic A, et al. Multimodality neuromonitoring for neurocardiology. J Interven Cardiol. 1998;11:197–204.

    Article  Google Scholar 

  84. Olsson C, Thelin S. Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegrade cerebral perfusion: diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg. 2006;131:371–9.

    Article  Google Scholar 

  85. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–45.

    Article  Google Scholar 

  86. Goldman S, Sutter F, Ferdinand F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7:E376–81.

    Article  Google Scholar 

  87. Edmonds Jr HL. Protective effect of neuromonitoring during cardiac surgery. Ann NY Acad Sci. 2005;1053:12–9.

    Article  Google Scholar 

  88. Baker RA, Knight JL. The Oxicab trial: cerebral oximetry in adult surgical patients. J Extra Corpor Tech. 2006;38:77 (abstract).

    CAS  Google Scholar 

  89. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.

    Article  Google Scholar 

  90. Casati A, Fanelli G, Pietropaoli P, et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg. 2005;101:740–7.

    Article  Google Scholar 

  91. Grogan K, Stearns J, Hogue CW. Brain protection in cardiac surgery. Anesthesiol Clin. 2008;25:531–8.

    Google Scholar 

  92. Vohra HA, Modi A, Ohri SK. Does the use of intraoperative cerebral regional oxygen saturation monitoring during cardiac surgery lead to improve outcomes? Interact Cardiovasc Thorac Surg. 2009;9:318–23.

    Article  Google Scholar 

  93. Goto T, Baba T, Honma K, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72:137–42.

    Article  CAS  Google Scholar 

  94. Vets P, ten Broecke P, Adriaensen H, et al. Cerebral oximetry in patients undergoing carotid endarterectomy: preliminary results. Acta Anaesthesiol Belg. 2004;55:215–20.

    Google Scholar 

  95. Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revised. Brain. 2002;125:595–607.

    Article  Google Scholar 

  96. Murkin JM. NIRS: a standard of care for CPB vs. an evolving standard for selective cerebral perfusion. J Extra Corpor Tech. 2009;41:11–4.

    Google Scholar 

  97. Edmonds HL Jr. Standard of Care status for cardiac surgery central nervous system monitoring. J Cardiothorac Vasc Anesth. 2011; 25(4):e-16-17 (on-line version only).

    Google Scholar 

  98. Tweddell JS, Ghanayem NS, Hoffman GM. Pro: NIRS is “Standard of Care” for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:44–50.

    Article  Google Scholar 

  99. Edmonds HL Jr. Standard of Care status for cardiac surgery central nervous system monitoring. J Cardiothorac Vasc Anesth. 2010;24:541–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey L. Edmonds Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edmonds, H.L., Isley, M.R., Balzer, J.R. (2012). Near-Infrared Spectroscopy. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0308-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0308-1_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0307-4

  • Online ISBN: 978-1-4614-0308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics