Skip to main content

Abstract

Since the mid-1990s, the concept of “digital convergence” has been proposed and discussed from both technological and business viewpoints [1]. In the twenty-first century, “digital convergence” has become stronger and stronger in various digital fields. It is especially notable in the recent trend in digital consumer products such as cellular phones, car information systems, and digital TVs (Fig. 1.1) [2, 3]. This trend will become more widespread in various embedded systems, and it will expand the conventional market due to the development of new functional products and also lead to the creation of new markets for goods such as robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negroponte N (1995) Being digital. Knopf, New York

    Google Scholar 

  2. Uchiyama K (2008) Power-efficient heterogeneous parallelism for digital convergence, digest of technical papers of 2008 Symposium of VLSI circuits, Honolulu, USA, pp 6–9

    Google Scholar 

  3. Uchiyama K (2010) Power-efficient heterogeneous multicore for digital convergence, Proceedings of 10th International Forum on Embedded MPSoC and Multicore, Gifu, Japan, pp 339–356

    Google Scholar 

  4. Liu T-M, Lin T-A, Wang S-Z, Lee W-P, Hou K-C, Yang J-Y, Lee C-Y (2006) A 125uW, Fully Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Application, Digest of Technical Papers of 2006 IEEE International Solid-State Circuits Conference, San Francisco, USA, pp 402–403

    Google Scholar 

  5. Iwata K, Mochizuki S, Shibayama T, Izuhara F, Ueda H, Hosogi K, Nakata H, Ehama M, Kengaku T, Nakazawa T, Watanabe H (2008) A 256 mW Full-HD H.264 High-Profile CODEC Featuring Dual Macroblock-Pipeline Architecture in 65 nm CNOS, Digest of Technical Papers of 2008 Symposium of VLSI circuits, Honolulu, USA, pp 102–103

    Google Scholar 

  6. Hariyama M, Kazama H, Kameyama M (2000) VLSI Processor for Hierarchical Template Matching and Its Application to a Ball-Catching Robot System, IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), vol 2, pp 613–618

    Google Scholar 

  7. Kazama H, Hariyama M, Kameyama M (2000) Design of a VLSI processor based on an immediate output generation scheduling for ball-trajectory prediction. J Robot Mechatron 12(5):534–540

    Google Scholar 

  8. Kawasaki S (1994) SH-II: a low power RISC micro for consumer applications. Hot Chips VI:79–103

    Google Scholar 

  9. Narira S, Ishibashi K, Tachibana S, Norisue K, Shimazaki Y, Nishimoto J, Uchiyama K, Nakazawa T, Hirose K, Kudoh I, Izawa R, Matsui S, Yoshioka S, Yamamoto M, Kawasaki I (1995) A low-power single-chip microprocessor with multiple page-size MMU for nomadic computing, 1995 Symposium on VLSI Circuits, Dig. Tech. Papers, pp 59–60

    Google Scholar 

  10. Hasegawa A, Kawasaki I, Yamada K, Yoshioka S, Kawasaki S, Biswas P (1995) SH3: high code density, low power. IEEE Micro 15(6):11–19

    Article  Google Scholar 

  11. Maejima H, Kainaga M, Uchiyama K (1997) Design and architecture for low-power/high-speed RISC microprocessor: SuperH. IEICE Trans Electron E80-C(12):1593–1545

    Google Scholar 

  12. Arakawa F, Nishii O, Uchiyama K, Nakagawa N (1997) SH4 RISC microprocessor for multimedia. HOT Chips IX:165–176

    Google Scholar 

  13. Uchiyama K (1998) Low-power, high-performance Microprocessors for Multimedia Applications, Cool Chips I, An International Symposium on Low-Power and High-Speed Chips, pp 83–98

    Google Scholar 

  14. Arakawa F, Nishii O, Uchiyama K, Nakagawa N (1998) SH4 RISC multimedia microprocessor. IEEE Micro 18(2):26–34

    Article  Google Scholar 

  15. Nishii O, Arakawa F, Ishibashi K, Nakano S, Shimura T, Suzuki K, Tchibana M, Totsuka Y, Tsunoda T, Uchiyama K, Yamada T, Hattori T, Maejima H, Nakagawa N, Narita S, Seki M, Shimazaki Y, Satomura R, Takasuga T, Hasegawa A (1998) A 200 MHz 1.2 W 1.4GFLOPS Microprocessor with Graphic Operation Unit, 1998 IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp 288–289

    Google Scholar 

  16. Mizuno H, Ishibashi K, Shimura T, Hattori T, Narita S, Shiozawa K, Ikeda S, Uchiyama K (1999) An 18-μA standby current 1.8 V 200-MHz microprocessor with self-substrate-biased data-retention mode. IEEE J Solid-State Circuits 34(11):1492–1500

    Article  Google Scholar 

  17. Kamei T, et al (2004) A resume-standby application processor for 3G cellular phones, ISSCC Dig Tech Papers:336–337, 531

    Google Scholar 

  18. Ishikawa M, et al (2004) A resume-standby application processor for 3G cellular phones with low power clock distribution and on-chip memory activation control, COOL Chips VII Proceedings, vol I, pp 329–351

    Google Scholar 

  19. Arakawa F, et al (2004) An embedded processor core for consumer appliances with 2.8GFLOPS and 36 M Polygons/s FPU. IEICE Trans Fundamentals, E87-A(12):3068–3074

    Google Scholar 

  20. Ishikawa M, et al (2005) A 4500 MIPS/W, 86 μA resume-standby, 11 μA ultra-standby application processor for 3G cellular phones. IEICE Trans Electron E88-C(4):528–535

    Google Scholar 

  21. Arakawa F, et al (2005) SH-X: An Embedded Processor Core for Consumer Appliances, ACM SIGARCH Computer Architecture News 33(3), pp 33–40

    Google Scholar 

  22. Yamada T, et al (2005) Low-Power Design of 90-nm SuperHTM Processor Core, Proceedings of 2005 IEEE International Conference on Computer Design (ICCD), pp 258–263

    Google Scholar 

  23. Arakawa F, et al (2005) SH-X2: An Embedded Processor Core with 5.6 GFLOPS and 73 M Polygons/s FPU, 7th Workshop on Media and Streaming Processors (MSP-7), pp 22–28

    Google Scholar 

  24. Yamada T et al (2006) Reducing Consuming Clock Power Optimization of a 90nm Embedded Processor Core. IEICE Trans Electron E89–C(3):287–294

    Article  Google Scholar 

  25. Kodama T, Tsunoda T, Takada M, Tanaka H, Akita Y, Sato M, Ito M (2006) Flexible Engine: A dynamic reconfigurable accelerator with high performance and low power consumption, in Proc. of the IEEE Symposium on Low-Power and High-Speed Chips (COOL Chips IX)

    Google Scholar 

  26. Noda H et al (2007) The design and implementation of the massively parallel processor based on the matrix architecture. IEEE J Solid-State Circuits 42(1):183–192

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uchiyama, K. et al. (2012). Background. In: Heterogeneous Multicore Processor Technologies for Embedded Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0284-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0284-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0283-1

  • Online ISBN: 978-1-4614-0284-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics