System-Wide Energy Optimization with DVS and DCR

  • Weixun Wang
  • Prabhat Mishra
  • Sanjay Ranka
Chapter
Part of the Embedded Systems book series (EMSY, volume 4)

Abstract

In Chaps. 3 and 5, we described approaches and algorithms for employing DCR and DVS in real-time systems separately. However, as shown in Fig. 1.5, both processor and cache subsystem as well as other components contribute to the system’s overall power dissipation. Therefore, it is promising to employ DVS and DCR simultaneously to perform system-wide energy optimization.

References

  1. 1.
    R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.MathSciNetMATHCrossRefGoogle Scholar
  2. 5.
    H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and aggressive scheduling techniques for power-aware real-time systems. In Proceedings of Real-Time Systems Symposium (RTSS), pages 95–105, 2001.Google Scholar
  3. 10.
    D. Bertozzi, L. Benini, and G. de Micheli. Low power error resilient encoding for on-chip data buses. In Proceedings of Design, Automation and Test Conference in Europe (DATE), pages 102–109, 2002.Google Scholar
  4. 13.
    S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, 1999.CrossRefGoogle Scholar
  5. 16.
    D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: The SimpleScalar tool set. Technical report, University of Wisconsin-Madison, 1996.Google Scholar
  6. 19.
    J. Chen, T. Kuo, and C. Shih. 1 + ε approximation clock rate assignment for periodic real-time tasks on a voltage-scaling processor. In Proceedings of International Conference on Embedded Software (EMSOFT), pages 247–250, 2005.Google Scholar
  7. 22.
    J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware rate-monotonic scheduling on a dynamic voltage scaling processor. In Proceedings of ACM SIGPLAN/SIGBED conference on Language, compilers, and tool support for embedded systems (LCTES), pages 153–162, 2006.Google Scholar
  8. 23.
    J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-time tasks in leakage-aware dynamic voltage scaling systems. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 289–294, 2007.Google Scholar
  9. 25.
    J.-H. Chern, J. Huang, L. Arledge, P.-C. Li, and P. Yang. Multilevel metal capacitance models for cad design synthesis systems. IEEE Electron Device Letters, 13(1):32–34, 1992.CrossRefGoogle Scholar
  10. 26.
    J.-W. Chi, C.-L. Yang, Y.-J. Chen, and J.-J. Chen. Cache leakage control mechanism for hard real-time systems. In Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 248–256, 2007.Google Scholar
  11. 29.
    B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy, and R. Chau. Transistor elements for 30nm physical gate lengths and beyond. Intel Technology Journal, 6:42–54, 2002.Google Scholar
  12. 31.
    EEMBC. EEMBC, The Embedded Microprocessor Benchmark Consortium, 2000.Google Scholar
  13. 33.
    W. Fornaciari, D. Sciuto, and C. Silvano. Power estimation for architectural exploration of hw/sw communication on system-level buses. In Proceedings of International Workshop on Hardware/Software Codesign (CODES), pages 152–156, 1999.Google Scholar
  14. 34.
    T. D. Givargis, F. Vahid, and J. Henkel. Fast cache and bus power estimation for parameterized system-on-a-chip design. In Proceedings of Design, Automation and Test Conference in Europe (DATE), pages 333–339, 2000.Google Scholar
  15. 40.
    M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of International Workshop on Workload Characterization (WWC), pages 3–14, 2001.Google Scholar
  16. 41.
    E. Hallnor and S. Reinhardt. A unified compressed memory hierarchy. In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA), pages 201–212, 2005.Google Scholar
  17. 46.
    HP. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/, 2008.
  18. 53.
    R. Jejurikar and R. Gupta. Dynamic voltage scaling for systemwide energy minimization in real-time embedded systems. In Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pages 78–81, 2004.Google Scholar
  19. 56.
    R. Jejurikar and R. Gupta. Energy-aware task scheduling with task synchronization for embedded real-time systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25:1024–1037, 2006.CrossRefGoogle Scholar
  20. 57.
    R. Jejurikar, C. Pereira, and R. K. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems. In Proceedings of Design Automation Conference (DAC), pages 275–280, 2004.Google Scholar
  21. 59.
    Y. Joo, Y. Choi, H. Shim, H. G. Lee, K. Kim, and N. Chang. Energy exploration and reduction of sdram memory systems. In Proceedings of Design Automation Conference (DAC), pages 892–897, 2002.Google Scholar
  22. 61.
    J. Kao, S. Narendra, and A. Chandrakasan. Subthreshold leakage modeling and reduction techniques. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 141–148, 2002.Google Scholar
  23. 65.
    N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets static power. IEEE Computer, 36(12):68–75, 2003.CrossRefGoogle Scholar
  24. 66.
    N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy instruction caches. leakage power reduction using dynamic voltage scaling and cache sub-bank prediction. In Proceedings of International Symposium on Microarchitecture (Micro), pages 219–230, 2002.Google Scholar
  25. 72.
    C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for evaluating and synthesizing multimedia and communications systems. In Proceedings of International Symposium on Microarchitecture (Micro), pages 330–335, 1997.Google Scholar
  26. 73.
    Y.-H. Lee, K. Reddy, and C. Krishna. Scheduling techniques for reducing leakage power in hard real-time systems. In Proceedings of Euromicro Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.Google Scholar
  27. 80.
    Marvell. StrongARM 1100 processor. http://www.marvell.com/, 1997.
  28. 82.
    P. Mejia-Alvarez, E. Levner, and D. Mosse. Adaptive scheduling server for power-aware real-time tasks. ACM Transactions on Embedded Computing Systems, 3(2), 2004.Google Scholar
  29. 87.
    A. C. Nacul and T. Givargis. Dynamic voltage and cache reconfiguration for low power. In Proceedings of Design, Automation and Test Conference in Europe (DATE), pages 1376–1377, 2004.Google Scholar
  30. 88.
    H. Noori, M. Goudarzi, K. Inoue, and K. Murakami. The effect of temperature on cache size tuning for low energy embedded systems. In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI), pages 453–456, 2007.Google Scholar
  31. 90.
    S. Oh, J. Kim, S. Kim, and C. Kyung. Task partitioning algorithm for intra-task dynamic voltage scaling. In Proceedings of International Symposium on Circuits and Systems (ISCAS), pages 1228–1231, 2008.Google Scholar
  32. 93.
    M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-vdd: a circuit technique to reduce leakage in deep-submicron cache memories. In Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pages 90–95, 2000.Google Scholar
  33. 99.
    R. Rao, H. Deogun, D. Blaauw, and D. Sylvester. Bus encoding for total power reduction using a leakage-aware buffer configuration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12):1376–1383, 2005.Google Scholar
  34. 103.
    C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time and energy constraints. In Proceedings of Real-Time Systems Symposium (RTSS), pages 246–255, 2002.Google Scholar
  35. 120.
    V. Swaminathan and K. Chakrabarty. Network flow techniques for dynamic voltage scaling in hard real-time systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(10):1385–1398, 2004.CrossRefGoogle Scholar
  36. 121.
    C. Talarico, J. W. Rozenblit, V. Malhotra, and A. Stritter. A new framework for power estimation of embedded systems. IEEE Computer, 38(2):71–78, 2005.CrossRefGoogle Scholar
  37. 126.
    L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for cache energy reduction. In Proceedings of International Symposium on Microarchitecture (Micro), pages 214–220, 2000.Google Scholar
  38. 129.
    W. Wang and P. Mishra. Dynamic reconfiguration of two-level caches in soft real-time embedded systems. In Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 145–150, 2009.Google Scholar
  39. 131.
    W. Wang and P. Mishra. PreDVS: Preemptive dynamic voltage scaling for real-time systems using approximation scheme. In Proceedings of Design Automation Conference (DAC), pages 705–710, 2010.Google Scholar
  40. 152.
    L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimization technique for real-time systems. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 761–764, 2006.Google Scholar
  41. 157.
    S. Zhang, K. Chatha, and G. Konjevod. Approximation algorithms for power minimization of earliest deadline first and rate monotonic schedules. In Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230, 2007.Google Scholar
  42. 161.
    X. Zhong and C. Xu. System-wide energy minimization for real-time tasks: Lower bound and approximation. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 516–521, 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Weixun Wang
    • 1
  • Prabhat Mishra
    • 1
  • Sanjay Ranka
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations