Energy Optimization of Cache Hierarchy in Multicore Real-Time Systems

  • Weixun Wang
  • Prabhat Mishra
  • Sanjay Ranka
Chapter
Part of the Embedded Systems book series (EMSY, volume 4)

Abstract

Computation using single-core processors has hit the power wall on its way of performance improvement. Chip multiprocessor (CMP) architectures, which integrates multiple processing units on a single integrated circuit (IC), have been widely adopted by major vendors like Intel, AMD, IBM and ARM in both general-purpose computers (e.g., [48]) and embedded systems (e.g., [2, 83]). Multicore processors are able to run multiple threads in parallel at lower power dissipation per unit of performance. Despite the inherent advantages, energy conservation is still a primary concern in multicore system optimization. While power consumption is a key concern in designing any computing devices, energy efficiency is especially critical for embedded systems. Real-time systems that run applications with timing constraints require unique considerations. Due to the ever growing demands for parallel computing, real-time systems commonly employ multicore processors nowadays [140, 148].

References

  1. 1.
    R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    ARM. ARM11MPCore Processor. http://www.arm.com/, 2007.
  3. 11.
    N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.CrossRefGoogle Scholar
  4. 15.
    B. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache partitioning on multi-tasking real time embedded systems. In Proceedings of International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 101–110, 2008.Google Scholar
  5. 40.
    M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of International Workshop on Workload Characterization (WWC), pages 3–14, 2001.Google Scholar
  6. 48.
    Intel. Core i7 processor. http://www.intel.com/, 2008.
  7. 62.
    D. Kaseridis, J. Stuecheli, and L. John. Bank-aware dynamic cache partitioning for multicore architectures. In Proceedings of International Conference on Parallel Processing (ICPP), pages 18–25, 2009.Google Scholar
  8. 63.
    S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational behavior to reduce cache leakage power. In Proceedings of International Symposium on Computer architecture (ISCA), pages 240–251, 2001.Google Scholar
  9. 67.
    S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip multiprocessor architecture. In Proceedings of International Conference on Parallel Architecture and Compilation Techniques (PACT), pages 111–122, 2004.Google Scholar
  10. 69.
    A. KleinOsowski and D. Lilja. Minnespec: A new SPEC benchmark workload for simulation-based computer architecture research. IEEE Computer Architecture Letters, 1(1):7, 2002.Google Scholar
  11. 74.
    J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging the gap between simulation and real systems. In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA), pages 367–378, 2008.Google Scholar
  12. 83.
    MIPS. MIPS32 1004K. http://www.mips.com/, 2008.
  13. 93.
    M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-vdd: a circuit technique to reduce leakage in deep-submicron cache memories. In Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pages 90–95, 2000.Google Scholar
  14. 97.
    G. Quan and X. S. Hu. Energy efficient DVS schedule for fixed-priority real-time systems. ACM Transactions on Design Automation of Electronic Systems, 6:1–30, 2007.Google Scholar
  15. 98.
    M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition shared caches. In Proceedings of International Symposium on Microarchitecture (Micro), pages 423–432, 2006.Google Scholar
  16. 100.
    R. Reddy and P. Petrov. Eliminating inter-process cache interference through cache reconfigurability for real-time and low-power embedded multi-tasking systems. In Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 198–207, 2007.Google Scholar
  17. 101.
    R. Reddy and P. Petrov. Cache partitioning for energy-efficient and interference-free embedded multitasking. ACM Transactions in Embedded Computing Systems, 9(3):1–35, 2010.CrossRefGoogle Scholar
  18. 106.
    A. Settle, D. Connors, and E. Gibert. A dynamically reconfigurable cache for multithreaded processors. Journal of Embedded Computing, 2:221–233, 2006.Google Scholar
  19. 116.
    SPEC. SPEC CPU2000. http://www.spec.org/, 2000.
  20. 119.
    G. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for memory-aware scheduling and partitioning. In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA), pages 117–128, 2002.Google Scholar
  21. 140.
    Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H. Chu. Energy-efficient real-time scheduling of multimedia tasks on multi-core processors. In Proceedings of ACM Symposium on Applied Computing (SAC), pages 258–262, 2010.Google Scholar
  22. 148.
    C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele. An approximation scheme for energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor systems. In Proceedings of Design, Automation and Test Conference in Europe (DATE), pages 694–699, 2009.Google Scholar
  23. 151.
    C. Yu and P. Petrov. Off-chip memory bandwidth minimization through cache partitioning for multi-core platforms. In Proceedings of Design Automation Conference (DAC), pages 132–137, 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Weixun Wang
    • 1
  • Prabhat Mishra
    • 1
  • Sanjay Ranka
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations