Advertisement

A Complex ΔΣ Modulator with an Improved STF

  • Bupesh PanditaEmail author
Chapter
  • 869 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The presence of interferers puts a severe demand on the linearity requirements of the analog circuitry of a ΔΣ ADC and, in such applications, instead of unity signal-transfer functions (STF), it may be more desirable to have an STF with improved out-of-band attenuation. Depending on the application, e.g., single sideband (SSB), it may also be desirable to have higher attenuation in image band frequencies. Historically, complex transfer functions have been based on frequency transformations of real prototype filters. However, because of arithmetical symmetry, such complex transfer functions are inefficient in meeting the asymmetric requirements of a wireless receiver.

Keywords

Loop Filter Filter Approximation Complex Filter Signal Transfer Function Stopband Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Martin,“Approximation of Complex IIR Bandpass Filters Without Arithmetic Symmetry,” IEEE Trans. Circuits and Systems-I, vol. 52, No. 4, pp. 794–803, April 2005.MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. R. Norsworthy, R. Schreier, and G. C. Temes, Eds., Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1997. ISBN 0780310454.Google Scholar
  3. 3.
    Richard W. Daniels, Approximation Methods for Electronic Filter Design: With Applications to Passive, Active, and Digital Networks, McGraw-Hill, 1974.Google Scholar
  4. 4.
    Peter O. Brackett, A.S.Sedra, Filter Theory and Design: Active and Passive, Matrix Series in Circuits and Systems.Google Scholar
  5. 5.
    Bupesh Pandita, K. W. Martin, “Designing Complex Delta Sigma Modulators with Signal-Transfer Functions having Good Stop-Band Attenuation,” pp. 3626–3629, ISCAS 2007.Google Scholar
  6. 6.
    Richard Schreier and Gabor C. Temes, Understanding Delta-Sigma Data Converters. Wiley-IEEE Press, 2004. ISBN 0-471-46585-2.Google Scholar
  7. 7.
    KiYoung Nam, Sang-Min Lee, D. K. Su, and B. A. Wooley, “A low-voltage lowpower sigma-delta modulator for broadband analog-to-digital conversion,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1855–1864, Sep. 2005.Google Scholar
  8. 8.
    Richard Schreier, “An Empirical Study of High-Order Single-Bit Delta-Sigma Modulators,” IEEE Transactions on circuits and systems-II: analog and digital signal processing, vol. 40, no. 8, August 1993.Google Scholar
  9. 9.
    John. G. Kenney, and L. Richard Carley, “Design of multibit noiseshapingdata converters,” Analog Integrated Circuits and Signal Processing, vol. 3, no. 3, May 1993.Google Scholar
  10. 10.
    The Math Works, Inc., Matlab, Version 6.4, Natick, Massachusets: The Math Works, Inc., R14, 2005.Google Scholar
  11. 11.
    ATSC Recommended Practice: Receiver Performance Guidelines, ATSC A/74, June 2004, pp 13–14.Google Scholar
  12. 12.
    Mobile and Portable DVB-T/H Radio Access Interface Specification, EICTA MBRAI-02, Jan 2004.Google Scholar
  13. 13.
    S.A. Jantzi, K. W. Martin, and A. S. Sedra, “The effects of mismatch in complex bandpass ΔΣ modulators,” IEEE International Symposium on Circuits and Systems, vol. 1, 12–15, May 1996, pp. 227–23.Google Scholar
  14. 14.
    R. B. Staszewski, K. Muhammad, D. Leipold, Chih-Ming Hung, Yo-Chuol Ho, J. L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, Jinseok Koh, S. John, Irene Yuanying Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O. E. Eliezer, E. de-Obaldia, P. T. Balsara, “All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS,” IEEE Journal of Solid-State Circuits, Volume 39, Issue 12, pp 2278–2291, December 2004.Google Scholar
  15. 15.
    Zhiyu Ru, E. A. M. Klumperink, B. Nauta, “On the Suitability of Discrete-Time Receivers for Software-Defined Radio,” IEEE International Symposium on Circuits and Systems, 2007, 27–30 pp. 2522–2525, May 2007.Google Scholar
  16. 16.
    W.-H. Ki, G. C. Temes, “Low-phase-error offset-compensated switched-capacitor integrator,” Electronics Letters, Volume 26, Issue 13, 21 June 1990, pp.957–959.Google Scholar
  17. 17.
    Anas A. Hamoui, Delta-Sigma Data Converters for Broadband Digital Communications, Ph.D. Thesis, University of Toronto, 2004.Google Scholar
  18. 18.
    J. Silva, U. Moon, J. Steensgaard, G. C. Temes, “Wideband low-distortion deltasigma ADC topology,” Electronics Letters Volume 37, Issue 12, 7 June 2001 pp 737–738.Google Scholar
  19. 19.
    E. H. Dagher, P. A. Stubberud, W. K. Masenten, M. Conta, T. V. Dinh, “A 2-GHz analog-to-digital delta-sigma modulator for CDMA receivers with 79-dB signal-tonoise ratio in 1.23-MHz bandwidth,” IEEE J. Solid-State Circuits, vol. 39, pp. 1819–1828, November 2004.CrossRefGoogle Scholar
  20. 20.
    K. Philips, P. A. C. M. Nuijten, R. L. J. Roovers, A. H. M. van Roermund, F. M. Chavero, M. T. Pallares, A. Torralba, “A continuous-time ΣΔ ADC with increased immunity to interferers,” IEEE J. Solid-State Circuits, vol. 39, issue. 12, pp. 2170–2178, December 2004.CrossRefGoogle Scholar
  21. 21.
    Roubik Gregorian, Gabor C Temes, Analog Mos Integrated Circuits for Signal Processing, Wiley Series On Filters, Wiley-Interscience, 1986.Google Scholar
  22. 22.
    R. Schreier, J. Silva, J. Steensgaard and G.C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Transactions on Circuits and Systems, vol. 15, no. 11, pp. 2358–2368, November 2005.Google Scholar
  23. 23.
    Q. L. Liu, W. M. Snelgrove, and A.S. Sedra, “Switched-capacitor implementation of complex filters,” Proceedings of the 1986 IEEE ISCAS, vol. 3, pp. 1121–1124, May 1986.Google Scholar
  24. 24.
    A. S. Sedra, W. M. Snelgrove, and R. Allen, “Complex analog bandpass filters designed by linearly shifting real low-pass prototypes,” Proceedings of the 1985 IEEE ISCAS, vol. 3, pp. 1223–1226, June 1985. Google Scholar
  25. 25.
    R. H. Allen, “Complex analog filters obtained from shifted lowpass prototypes”, M.A.Sc. thesis, University of Toronto, 1985.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.AMDMarkhamCanada

Personalised recommendations