Comparative Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Bone Marrow, Umbilical Cord and Placenta: Implication in the Migration

  • Guo Li
  • Xiao-Ai Zhang
  • Hua Wang
  • Xin Wang
  • Chun-Ling Meng
  • Chu-Yan Chan
  • David Tai Wai Yew
  • Kam Sze Tsang
  • Karen Li
  • Sau-na Tsai
  • Sai-Ming Ngai
  • Zhong Chao Han
  • Marie Chia-Mi Lin
  • Ming-Liang He
  • Hsiang-Fu Kung
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 720)


Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC- and P-MSC possess immunophenotypic and functional characteristics similar to BM-MSC. However, under defined conditions, the migration capacity of BM- and P-MSC was found to be 5.9- and 3.2-folds higher than that of UC-MSC, respectively. By the use of 2-DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Interestingly, the expression levels of those proteins reflect perfectly the migration capacity of corresponding MSC, which is also proved by in vitro overexpression and silencing techniques. Our study indicates that a bunch of migration-related proteins are pivotal in governing the migration capacity of MSC.


Mesenchymal Stem Cell Umbilical Cord Migration Capacity Migration Capability Mesenchymal Stem Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Minimum essential medium, alpha medium


Bone marrow


Cathepsin B


Cathepsin D


Glyceraldehyde-3-phosphate dehydrogenase


Green fluorescence protein


Stress 70 protein


Manganese superoxide dismutase


Mesenchymal stem cells






Plasminogen activator inhibitor-1






Small interfering ribonucleic acid


Umbilical cord



Conflict of Interest Statement: All authors declare no financial/commercial conflicts of interest.

The authors thank Dr. Didier Trono for kindly providing the lentiviral vector pLVTHM and its package plasmids. They also thank the donors of bone marrow, umbilical cord, and placenta. This work was supported by the Li Ka Shing Institute of Health Sciences Grant and RGC project: CUHK 7422_03M.


  1. 1.
    Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R et al (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278PubMedCrossRefGoogle Scholar
  2. 2.
    Musina RA, Bekchanova ES, Belyavskii AV, Sukhikh GT (2006) Differentiation potential of mesenchymal stem cells of different origin. Bull Exp Biol Med 141:147–151PubMedCrossRefGoogle Scholar
  3. 3.
    Miao Z, Jin J, Chen L, Zhu J et al (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687PubMedCrossRefGoogle Scholar
  4. 4.
    Lu LL, Liu YJ, Yang SG, Zhao QJ et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  5. 5.
    Hordijk P (2003) Endothelial signaling in leukocyte transmigration. Cell Biochem Biophys 38:305–322PubMedCrossRefGoogle Scholar
  6. 6.
    Nourshargh S, Marelli-Berg FM (2005) Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol 26:157–165PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt A, Ladage D, Steingen C, Brixius K et al (2006) Mesenchymal stem cells transmigrate over the endothelial barrier. Eur J Cell Biol 85:1179–1188PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu H, Mitsuhashi N, Klein A, Barsky LW et al (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935PubMedCrossRefGoogle Scholar
  9. 9.
    Lopez Ponte A, Marais E, Gallay N, Langonne A et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745CrossRefGoogle Scholar
  10. 10.
    Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by SDF-1-CXCR4 and HGF-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264PubMedCrossRefGoogle Scholar
  11. 11.
    De Becker A, Van Hummelen P, Bakkus M, Vande Broek I et al (2007) Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92:440–449PubMedCrossRefGoogle Scholar
  12. 12.
    Neth P, Ciccarella M, Egea V, Hoelters J et al (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892–1903PubMedCrossRefGoogle Scholar
  13. 13.
    Ding SJ, Li Y, Tan YX, Jiang MR et al (2004) From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics 3:73–81PubMedGoogle Scholar
  14. 14.
    Lee HK, Lee BH, Park SA, Kim CW (2006) The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics 6:1223–1229PubMedCrossRefGoogle Scholar
  15. 15.
    Lund RD, Wang S, Lu B, Girman S et al (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25:602–611PubMedCrossRefGoogle Scholar
  16. 16.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s ­disease. Stem Cells 24:781–792PubMedCrossRefGoogle Scholar
  17. 17.
    Allers C, Sierralta WD, Neubauer S, Rivera F et al (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78:503–508PubMedCrossRefGoogle Scholar
  18. 18.
    Bensidhoum M, Chapel A, Francois S, Demarquay C et al (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319PubMedCrossRefGoogle Scholar
  19. 19.
    Liechty KW, MacKenzie TC, Shaaban AF, Radu A et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286PubMedCrossRefGoogle Scholar
  20. 20.
    Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20PubMedCrossRefGoogle Scholar
  21. 21.
    Halliwell B, Gutteridge JMC (1986) Free radicals in biology and medicine. Oxford University Press, New York, pp 86–106Google Scholar
  22. 22.
    Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer a review. Cancer Res 39:1141–1149PubMedGoogle Scholar
  23. 23.
    Safford SE, Oberley TD, Urano M, St. Clair DK (1994) Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54:4261–4265PubMedGoogle Scholar
  24. 24.
    McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30:99–124PubMedCrossRefGoogle Scholar
  25. 25.
    Rajalingam K, Wunder C, Brinkmann V, Churin Y et al (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837–843PubMedCrossRefGoogle Scholar
  26. 26.
    Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA (1993) Molecular aspects of tumor cell invasion and metastasis. Cancer 71:1368–1383PubMedCrossRefGoogle Scholar
  27. 27.
    Del Rosso M, Fibbi G, Pucci M, D’Alessio S et al (2002) Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis 19:193–207PubMedCrossRefGoogle Scholar
  28. 28.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  29. 29.
    Turk V, Kos J, Turk B (2004) Cysteine cathepsins (proteases) – on the main stage of cancer? Cancer Cell 5:409–410PubMedCrossRefGoogle Scholar
  30. 30.
    Podgorski I, Sloane BF (2003) Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp 70:263–276PubMedGoogle Scholar
  31. 31.
    Yan S, Sloane BF (2003) Molecular regulation of human cathepsin B: implication in pathologies. Biol Chem 384:845–854PubMedGoogle Scholar
  32. 32.
    Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H et al (2006) Tumor cell-derived and macrophage-­derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250PubMedCrossRefGoogle Scholar
  33. 33.
    Wickramasinghe NS, Nagaraj NS, Vigneswaran N, Zacharias W (2005) Cathepsin B promotes both motility and invasiveness of oral carcinoma cells. Arch Biochem Biophys 436:187–195PubMedCrossRefGoogle Scholar
  34. 34.
    Oh-e H, Tanaka S, Kitadai Y, Shimamoto F et al (2001) Cathepsin D expression as a possible predictor of lymph node metastasis in submucosal colorectal cancer. Eur J Cancer 37:180–188PubMedCrossRefGoogle Scholar
  35. 35.
    Ikeguchi M, Fukuda K, Oka S, Hisamitsu K et al (2001) Micro-lymph node metastasis and its correlation with cathepsin D expression in early gastric cancer. J Surg Oncol 77:188–194PubMedCrossRefGoogle Scholar
  36. 36.
    Glondu M, Liaudet-Coopman E, Derocq D, Platet N et al (2002) Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 21:5127–5134PubMedCrossRefGoogle Scholar
  37. 37.
    Praus M, Collen D, Gerard RD (2002) Both u-PA inhibition and vitronectin binding by plasminogen activator inhibitor 1 regulate HT1080 fibrosarcoma cell metastasis. Int J Cancer 102:584–591PubMedCrossRefGoogle Scholar
  38. 38.
    Lim IT, Meroueh SO, Lee M, Heeg MJ, Mobashery S (2004) Strategy in inhibition of cathepsin B, a target in tumor invasion and metastasis. J Am Chem Soc 126:10271–10277PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Guo Li
    • 1
  • Xiao-Ai Zhang
    • 1
  • Hua Wang
    • 1
  • Xin Wang
    • 1
  • Chun-Ling Meng
    • 1
  • Chu-Yan Chan
    • 1
    • 2
  • David Tai Wai Yew
    • 2
  • Kam Sze Tsang
    • 3
  • Karen Li
    • 4
  • Sau-na Tsai
    • 5
  • Sai-Ming Ngai
    • 5
  • Zhong Chao Han
    • 6
  • Marie Chia-Mi Lin
    • 7
  • Ming-Liang He
    • 1
  • Hsiang-Fu Kung
    • 1
    • 8
  1. 1.Stanley Ho Centre for Emerging Infectious DiseasesThe Chinese University of Hong KongHong KongPeople’s Republic of China
  2. 2.Department of AnatomyThe Chinese University of Hong KongHong KongPeople’s Republic of China
  3. 3.Li Ka Shing Institute of Health Sciences and Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongPeople’s Republic of China
  4. 4.Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongPeople’s Republic of China
  5. 5.Department of BiologyThe Chinese University of Hong KongHong KongPeople’s Republic of China
  6. 6.Institute of HematologyChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinPeople’s Republic of China
  7. 7.Department of ChemistryThe University of Hong KongHong KongPeople’s Republic of China
  8. 8.State Key Laboratory in Oncology in South China, Cancer CenterSun Yat-Sen University Cancer CenterGuangzhouPeople’s Republic of China

Personalised recommendations