Skip to main content

Histone Deacetylase Inhibitor: Antineoplastic Agent and Radiation Modulator

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

Inhibitors of histone deacetylases (HDACs) have emerged as a new class of anticancer agents based on their actions in cancer cell growth and cell cycle arrest, terminal differentiation, and apoptosis. Previously, we rationally designed and developed a new class of hydroxamide- and mercaptoacetamide-bearing HDAC inhibitors. A subset of these inhibitors exhibited chemo-radiation sensitizing properties in various human cancer cells. Furthermore, some HDAC inhibitors protected normal cells from radiation-induced damage and extended the survival of mice following total body exposure to lethal dose radiation. Pathological analyses revealed that intestinal and bone marrow cellularities recovered significantly from radiation-induced damage by structural compartments restoration, suggesting the mechanism of action of these HDAC inhibitors. These findings support the hypothesis that epigenetic regulation may play a crucial role in the functional recovery of normal tissues from radiation injuries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Struhl K, Moqtaderi Z (1998) The TAFs in the HAT. Cell 94:1–4

    Article  PubMed  CAS  Google Scholar 

  2. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  PubMed  CAS  Google Scholar 

  3. Katan-Khaykovich Y, Struhl K (2002) Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev 16:743–752

    Article  PubMed  CAS  Google Scholar 

  4. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opinion Genet Dev 9:40–48

    Article  CAS  Google Scholar 

  5. De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  6. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  7. Fischle W, Kiermer V, Dequiedt F, Verdin E (2001) The emerging role of class II histone deacetylases. Biochem Cell Biol 79:337–348

    Article  PubMed  CAS  Google Scholar 

  8. Verdin E, Dequiedt F, Kasler H (2003) Class II histone deacetylases: versatile regulators. Trends Genet 5:286–293

    Article  Google Scholar 

  9. Michan S, Sinclair D (2007) Sirtulins in mammals: insight into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  10. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. JMC 338:17–31

    CAS  Google Scholar 

  11. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  12. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  PubMed  CAS  Google Scholar 

  13. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T cell lymphoma. Oncologist 12:1247–1252

    Article  PubMed  CAS  Google Scholar 

  14. Jung M, Velena A, Chen B, Petukhov PA, Kozikowski AP, Dritschilo A (2005) Novel HDAC inhibitors with radiosensitizing properties. Radiat Res 163:488–493

    Article  PubMed  CAS  Google Scholar 

  15. Chen B, Petukhov PA, Jung M, Velena A, Eliseeva E, Dritschilo A, Kozikowski AP (2005) Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors. Bioorg Med Chem Let 15:1389–1392

    Article  CAS  Google Scholar 

  16. Konsoula Z, Cao H, Velena A, Jung M (2009) Pharmacokinetics-pharmacodynamics and antitumor activity of mercaptoacetamide-based histone deacetylase inhibitors. Mol Cancer Ther 8:2844–2851

    Article  PubMed  CAS  Google Scholar 

  17. Jung M, Yong KJ, Velena A, Lee SA (2009) Epigenetic Targets in drug discovery: cell-based assays for HDAC inhibitor hit validation. The Wiley-VCH series “Methods and Principles in Medicinal Chemistry” 42:119–137

    Google Scholar 

  18. Yu X, Guo ZS, Marcu MG et al (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–513

    Article  PubMed  CAS  Google Scholar 

  19. Kramer OH, Zhu P, Ostendorff HP et al (2003) the histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDA2. EMBO J 22:3411–3420

    Article  PubMed  Google Scholar 

  20. Biade S, Stobbe CC, Boyd JT, Chapman JD (2001) Chemical agents that promote chromatin compaction radiosensitize tumor cells. Int J Radiat Biol 77:1033–1042

    Article  PubMed  CAS  Google Scholar 

  21. Karagiannis TC, El-Osta A (2006) Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25:3885–3893

    Article  PubMed  CAS  Google Scholar 

  22. Arundel CM, Glicksman AS, Leith JT (1985) Enhancement of radiation injury in human colon tumor cells by the maturational agent Sodium Butyrate (NaB). Radiation Res 104:443–448

    Article  PubMed  CAS  Google Scholar 

  23. Kim JH, Shin JH, Kim IH (2004) Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 59:1174–1180

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Jung M, Dritschilo A, Jung M (2004) Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res 161:667–674

    Article  PubMed  CAS  Google Scholar 

  25. Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ (2003) Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. JCB 160:1017–1027

    Article  PubMed  CAS  Google Scholar 

  26. Bhaskara S, Chyla BJ, Amann JM, Knutson SK et al (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30:61–72

    Article  PubMed  CAS  Google Scholar 

  27. Miller KM, Tjeertes JV, Coates J, Legube G et al (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17:1144–1152

    Article  PubMed  CAS  Google Scholar 

  28. Kim GD, Choi YH, Dimtchev A, Jeong SJ, Dritschilo A, Jung M (1999) Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. J Biol Chem 274:31127–31130

    Article  PubMed  CAS  Google Scholar 

  29. Ju R, Muller MT (2003) Histone deacetylase inhibitors activate p21 (WAF1) expression via ATM. Cancer Res 63:2891–2897

    PubMed  CAS  Google Scholar 

  30. Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18:602–616

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Zhang Y, Carr T, Dimtchev A, Zaer N, Dritschilo A, Jung M (2007) Attenuated DNA damage repair by trichostatin A through BRCA1 suppression. Radiat Res 168:115–124

    Article  PubMed  CAS  Google Scholar 

  32. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lo brich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  PubMed  CAS  Google Scholar 

  33. Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    Article  PubMed  CAS  Google Scholar 

  34. Kouzarides T (2007) Chromatin modifcations and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  35. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  PubMed  CAS  Google Scholar 

  36. Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071

    Article  PubMed  CAS  Google Scholar 

  37. Folkvord S, Ree AH, Furre T et al (2009) Radiosensitization by SAHA in experimental colorectal carcinoma models-in vivo effects and relevance of histone acetylation status. Int J Radiat Oncol Biol Phys 74:546–552

    Article  PubMed  CAS  Google Scholar 

  38. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  PubMed  CAS  Google Scholar 

  39. Keogh MC, Kim JA, Downey M, Fillingham J et al (2006) A phosphase complex that dephosphorylates gH2AX regulates DNA damage checkpoint recovery. Nature 439:497–501

    Article  PubMed  CAS  Google Scholar 

  40. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nusssenzwig A (2003) Histone H2Ax phoshporylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5:675–679

    Article  PubMed  CAS  Google Scholar 

  41. Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH, Davidsen SK (2003) Role of class I and class II ­histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 310:529–536

    Article  PubMed  CAS  Google Scholar 

  42. Chung YL, Wang AJ, Yao LF (2004) Antitumor histone deacetylase inhibitos suppress cutaneous radiation syndrome: implications for increasing therapeutic gain in cancer radiotherapy. Mol Cancer Ther 3:317–325

    Article  PubMed  CAS  Google Scholar 

  43. Paoluzzi L, Figg WD (2004) Histone deacetylase inhibitors are potent radiation protectants. Cancer Biol Ther 3:612–613

    Article  PubMed  CAS  Google Scholar 

  44. Papeleu P, Vanhaecke T, Elaut G et al (2005) Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit Rev Toxicol 35:363–378

    Article  PubMed  CAS  Google Scholar 

  45. Ungerstedt JS, Sowa Y, Xu WS et al (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:673–678

    Article  PubMed  CAS  Google Scholar 

  46. Chang BK, Timmerman RB (2007) Stereotactic body radiation therapy: a comprehensive review. Am J Clin Onc 30:637–644

    Article  Google Scholar 

  47. Timmerman R, McGarry R, Yiannoutsos C, Papiez L et al (2006) Excessive toxicity when treating central tumors in a Phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Onc 24:4833–4839

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Lee and J. Tuturea for technical support. This work was supported in part by USMRC grants PC030471 (M. Jung) as well as the Lombardi Comprehensive Cancer Center Microscopy and Imaging Shared Resource, US Public Health Service Grant 2P30-CA-51008 and 1S10 RR15768-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Konsoula, Z., Velena, A., Lee, R., Dritschilo, A., Jung, M. (2011). Histone Deacetylase Inhibitor: Antineoplastic Agent and Radiation Modulator. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_14

Download citation

Publish with us

Policies and ethics