Quantum Mechanical Treatment of the Lamb Shift Without Taken into Account the Electric Charge

  • Voicu Dolocan
  • Andrei Dolocan
  • Voicu Octavian Dolocan


We present the calculus of the Lamb shift by using an equivalent expression for the Coulomb interaction energy, on the form αℏc ∕ R, where α is the fine structure constant. This expression was found by using a new Hamiltonian of interaction between fermions. The obtained results are in good agreement with experimental data. The calculus was fulfilled in both three-dimensional and two-dimensional spaces.


Interaction Energy Flux Line Lamb Shift Equivalent Expression Radial Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bethe H. A. (1947), The electromagnetic shift of energy levels, Phys. Rev. 72, 339–341.CrossRefGoogle Scholar
  2. 2.
    Bransden B. H. and C. J. Joachain (1983), The Physics of Atoms and Molecules, Longman Group Ltd.Google Scholar
  3. 3.
    Dolocan A., V. O. Dolocan and V. Dolocan (2005), A new Hamiltonian of interaction for fermions, Mod. Phys. Lett. B19, 669–681.MathSciNetGoogle Scholar
  4. 4.
    Dolocan V., A. Dolocan and V. O. Dolocan (2010), Quantum Mechanical Treatment of the Electron-Boson Interaction Viewed as a Coupling through Flux Lines. Polarons, Int. J. Mod. Phys. B24, 479–495; On the Chemical Bindings in Solids, Rom. J. Phys. 55, 153–172.Google Scholar
  5. 5.
    Greiner W. and J. Reinhardt (1994), Quantum Electrodynamics, Springer-Verlag, Berlin.MATHGoogle Scholar
  6. 6.
    Guo S. H., X. L. Yang, F.T. Chen, K. W. Wong and W. W. Y. Ching (1991), Analytic Solution of a Two-Dimensional Hydrogen Atom. I. Nonrelativistic Theory. Phys. Rev. A43, 1197–1205.Google Scholar
  7. 7.
    Lamb E., Jr. and R. C. Retherford (1947), Fine Structure of the Hydrogen Atom by a Microwave Method, Phys. Rev. 72, 241–243.CrossRefGoogle Scholar
  8. 8.
    Taut M. (1995), Two-dimensional Hydrogen in a Magnetic Field, J. Phys. A28, 2081–2085.MathSciNetGoogle Scholar
  9. 9.
    Welton T. A. (1948), Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field, Phys. Rev. 74, 1157–1167.MATHCrossRefGoogle Scholar
  10. 10.
    Yang X. L., S. H. Guo, F. T. Chan, K. W. Wong an, W. Y. Ching (1991), Analytic Solution of a two Dimensional Hydrogen Atom. II. Relativistic Theory, Phys. Rev. A43, 1186–1196.Google Scholar
  11. 11.
    Zaslow B. and M. E. Zandler (1967), Two-Dimensional analog to the Hydrogen Atom, Am. J. Phys. 35, 1118–1119.CrossRefGoogle Scholar
  12. 12.
    Dolocan V., V. O. Dolocan and A. Dolocan (to be published), On the interaction between fermions via mass less bosons and massive particles.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Voicu Dolocan
    • 1
  • Andrei Dolocan
  • Voicu Octavian Dolocan
  1. 1.Faculty of PhysicsUniversity of BucharestBucharestRomania

Personalised recommendations