Damage characterization in Dual-Phase steels using X-ray tomography

  • C. Landron
  • E. Maire
  • J. Adrien
  • O. Bouaziz
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


In-situ tensile tests have been carried out during X-ray microtomography imaging of dual-phase steels. Void nucleation has been quantified as a function of strain and triaxiality using the obtained 3D images. The Argon's criterion of decohesion has then been used in a model for nucleation in the case where martensite plays the role of inclusions. This criterion has been modified to include the local stress field and the effect of kinematic hardening present in such an heterogeneous material.


Metallurgical Transaction Ductile Fracture Duplex Stainless Steel Void Nucleation Kinematic Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argon AS, Im J, Safoglu R, Cavity formation from inclusions in ductile fracture, Metallurgical Transactions A, Volume 6,Issue 4, pp 825-837, 1975.CrossRefGoogle Scholar
  2. 2.
    Goods SH, Brown LM, Nucleation of cavities by plastic-deformation – Overview, Acta Metallurgica,Volume 27, Issue 1,pp 1-15,1979.CrossRefGoogle Scholar
  3. 3.
    Beremin FM,Cavity formation from inclusions in ductile fracture of A508 steel, Metallurgical and Materials TransactionsA, Volume 12, Issue 5, pp 723-731,1981.CrossRefGoogle Scholar
  4. 4.
    Steinbrunner DL, Matlock DK, Krauss G, Void formation during tensile testing of dual phase steels, MetallurgicalTransactions A, Volume 19, Issue 3, pp 579-589,1988.Google Scholar
  5. 5.
    Avramovic-Cingara G, Saleh CAR, Jain M, Wilkinson DS, Void Nucleation and Growth in Dual-Phase Steel 600during Uniaxial Tensile Testing, Metallurgical and Materials Transactions A, Vlume 40, pp 3117-3127, 2009.Google Scholar
  6. 6.
    Tanaka K, Mori T, Nakamura T, Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix,Philosophical Magazine, Volume 21, Issue 170, pp. 267–279, 1970.CrossRefGoogle Scholar
  7. 7.
    Thomason PF, Ductile Fracture of Metals, Pergamon Press, Oxford, 1990.Google Scholar
  8. 8.
    Kwon D, Asaro RJ, A study of void nucleation, growth, and coalescence in spheroidized-1518 steel, MetallurgicalTransactions, Volume 21, Issue 1, pp 91-101, 1990.Google Scholar
  9. 9.
    Walsh JA, Jata KV, Starke EA, The influence of Mn dispersoid content and stress state on ductile fracture of 2134 typeAl-alloys, Acta Metallurgica, Volume 37, Issue 11, pp 2861-2871, 1989.CrossRefGoogle Scholar
  10. 10.
    Bugat S, Besson J, PineauA, Micromechanical modeling of the behavior of duplex stainless steels, ComputationalMaterials Science, Volume 16, Issue 1-4, 158-166, 1999.Google Scholar
  11. 11.
    Needleman A, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, Volume54, pp 525-531, 1987.Google Scholar
  12. 12.
    Needleman A, Tvergaard V, An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics ofSolids, Volume 32, Issue 6, pp 461-490, 1984.CrossRefGoogle Scholar
  13. 13.
    Nutt SR, Needleman A, Void nucleation at fiber ends in Al-SiC composites, Scripta Materialia, Volume 21, Issue 5, pp705-710, 1987.Google Scholar
  14. 14.
    Buffiere JY, Maire E, Cloetens P, Lormand G, Fougères R, Characterization of internal damage in a MMCp using x-raysynchrotron phase contrast microtomography, Acta Materialia, Volume 47, Issue 5, pp 1613-1625, 1999.CrossRefGoogle Scholar
  15. 15.
    Martin CF, Josserond C, Salvo L, Blandin JJ, Cloetens P, Boller E, Characterisation by X-ray micro-tomography ofcavity coalescence during superplastic deformation, Scripta Materialia, Volume 42, Issue 4, pp 375-381, 2004.CrossRefGoogle Scholar
  16. 16.
    Babout L, Maire E, Fougeres R, Damage initiation in model metallic materials: X-ray tomography and modelling, ActaMaterialia, Volume 52, Issue 8, pp 2475-2487, 2004.CrossRefGoogle Scholar
  17. 17.
    Maire E, Bouaziz O, Di Michiel M, Verdu C, Initiation and growth of damage in a dual-phase steel observed by X-raymicrotomography, Acta Materialia, Volume 56, Issue 18, pp 4954-4964, 2008.CrossRefGoogle Scholar
  18. 18.
    Bron F, Besson J, Pineau A, Ductile rupture in thin sheets of two grades of 2024 aluminum alloy, Materials Science andEngineering A, Volume 380, Issue 1-2, pp 356-364, 2004.CrossRefGoogle Scholar
  19. 19.
    Abramoff MD, Magelhaes PJ, Ram SJ, Image Processing with ImageJ, Biophotonics International, Volume 11, Issue 7,pp 36-42, 2004.Google Scholar
  20. 20.
    Bridgman PW, Effects of High Hydrostatic Pressure on the Plastic Properties of Metals, Revue of Modern Physics,Volume 17, Issue 1, pp 3-14, 1945.CrossRefGoogle Scholar
  21. 21.
    Landron C, Bouaziz O, Maire E, Characterization and modeling of void nucleation by interface decohesion in dual phasesteel, Scripta Materialia, Volume 63, Issue 10, pp 973-976, 2010.CrossRefGoogle Scholar
  22. 22.
    Helbert AL, Feaugas X, Clavel M, Effects of microstructural parameters and back stress on damage mechanisms inalpha/beta titanium alloys, Acta Metallurgica, Volume 46, Issue 3, 939-951, 1998.Google Scholar
  23. 23.
    Allain S., Bouaziz O., Microstructure based modeling for the mechanical behavior of ferrite-pearlite steels suitable tocapture isotropic and kinematic hardening, Materials Science and Engineering A, Volume496, Issue 1-2, pp 329-336, 2008.Google Scholar
  24. 24.
    Grange RA, Hribal CR, Porter LF, Hardness of tempered martensite in carbon and low-alloy steels, MetallurgicalTransactions A, Volume 8, Issue 11, pp 1775-1787, 1977.Google Scholar
  25. 25.
    Kosco JB, Koss DA, Ductile fracture of mechanically alloyed iron-yttria alloys Metallurgical Transactions A, Volume24, Issue 3, pp 681-687, 1993.Google Scholar
  26. 26.
    Qiu H, Mori H, Enoki M, Kishi T, Development of A Three-dimensional Model for Void Coalescence in MaterialsContaining Two Types of Microvoids,ISIJ International, Volume 39, Issue 4, pp 358-364, 1999.CrossRefGoogle Scholar
  27. 27.
    LeRoy G, Embury JD, Edwards G, Ashby MF, A model of ductile fracture based on the nucleation and growth of voids,Acta Metallurgica, Volume 29, Issue 8, pp 1509-1522, 1981.CrossRefGoogle Scholar
  28. 28.
    Kwon D, Interfacial decohesion around spheroidal carbide particles, Scripta Metallurgica, Volume 22, Issue 7, pp 1161-1164, 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • C. Landron
    • 1
  • E. Maire
    • 1
  • J. Adrien
    • 1
  • O. Bouaziz
    • 2
  1. 1.INSA-Lyon, MATEIS UMR5510VilleurbanneFrance
  2. 2.ArcelorMittal ResearchMaizieres-les-Metz CedexFrance

Personalised recommendations