Skip to main content

An in-situ experimental-numerical approach for interface delamination characterization

  • Conference paper
  • First Online:
Experimental and Applied Mechanics, Volume 6

Abstract

Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high density) integration of dissimilar materials. Predictive finite element models are used during the design and optimization stage to minimize delamination failures, however, they requires a relevant interface model to capture the (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, a set of experimental-numerical tools is presented to enable accurate characterization of delamination mechanism(s) and prediction of the interface mechanics. First, a novel Miniature Mixed Mode Bending (MMMB) delamination setup is presented that enables in-situ SEM characterization of interface delamination mechanisms while sensitively measuring global load-displacement curves for the full range of mode mixities. Accurate determination of the critical energy release rate from the global load-displacement curve requires, however, identification and separation of bulk plastic contributions from the measured total energy dissipation; to this end, an analytical procedure is presented. Finally, a cohesive zone model suitable for mixed mode loading with realistic coupling is presented that can capture the range of interface failure mechanisms from damage to plasticity, as observed in-situ with SEM, as well as a parameter identification procedure. The set of experimental-numerical tools is validated on delamination measurements of a glue interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Srikanth, L. Chan, and C. J. Vath-III. Adhesion improvement of EMC-lead frame interface using brown oxide promoters. Thin Solid Films, 504:397–400, 2006.

    Article  Google Scholar 

  2. K. Bose, P. A.Mataga, and P. P. Castaneda. Improved impact and delamination resistance through interleafing. Journal Key Engineering Materials, 37:317–348, 1991.

    Google Scholar 

  3. O. van der Sluis, C. A. Yuan, W. D. van Driel, and G. Q. Zhang. Nanopackaging. Springer US, 2009.

    Google Scholar 

  4. O. van der Sluis, R. A. B. Engelen, R. B. R. van Silfhout, W. D. van Driel, and M. A. J. van Gils. Efficient damage sensitivity analysis of advanced Cu/low-k bond pad structures by means of the area release energy criterion. Microelec-tronics Reliability, 47:1975–1982, 2007.

    Article  Google Scholar 

  5. W. D. van Driel, M. A. J. van Gils, R. B. R. van Silfhout, and G. Q. Zhang. Prediction of delamination related IC and packaging reliability problems. Microelectronics Reliability, 45:1633–1638, 2005.

    Article  Google Scholar 

  6. S. A. Taylor and D. J. Carr. Post failure analysis of 00/900 ultra high molecular weight polyethylene composite after ballistic testing. Journal of Microscopy, 196:249–256, 1999.

    Article  Google Scholar 

  7. A. Todoroki, M. Tanaka, and Y. Shimamura. Electrical resistance change method for monitoring delamination of CFRP laminates: effect of spacing between electrodes. Composites Science and Technology, 65:37–46, 2005.

    Article  Google Scholar 

  8. G. A. O. Davies, D. Hitchings, and J. Ankersen. Predicting delamination and de-bonding in modern aerospace composite structures. Composites Science and Technology, 66:846–854, 2006.

    Article  Google Scholar 

  9. R. Okada and M. T. Kortschot. The role of the resin fillet in the delamination of honeycomb sandwich structures. Composites Science and Technology, 62:1811–1819, 2002.Nix, W. D., "Mechanical properties of thin films," Metall.Trans.A., 20, 11, pp. 2217–2245, 1989.

    Google Scholar 

  10. C. C. Ciang, J-R. Lee, and H-J. Bang. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology, 19(122001):1–20, 2008.

    Google Scholar 

  11. A. G. Evans, M. Ruhle, B. J. Dalgleish, and P. G. Charalambides. The fracture energy of bimaterial interfaces. Material Science and Engineering, A126:53–64, 1990.

    Article  Google Scholar 

  12. G. Dreier, M. Meyer, S. Schmauder, and G. Elssner. Fracture mechanics studies of thermal mismatch using a four-point bending specimen. Acta Metallurgica and Materialia, 40:S345–S353, 1992.

    Article  Google Scholar 

  13. V. Gupta and A. Pronin. New technique to measure the toughness of thin-film interfaces. Journal of American Ceramic Society, 78(5):1397–1400, 1995.

    Article  Google Scholar 

  14. A. A. Volinsky, J. B. Vella, and W. W. Gerberich. Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films, 429:201–210, 2003.

    Article  Google Scholar 

  15. W. Li and T. Siegmund. An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating - substrate system. Acta Materialia, 52:2989–2999, 2004.

    Article  Google Scholar 

  16. L. Banks-Sills, V. Boniface, and R. Eliasi. Development of amethodology for determination of interface fracture toughness of laminate composites - the 0o/90o pair. International Journal of Solids and Structures, 42:663–680, 2005.

    Article  MATH  Google Scholar 

  17. Jy-An. J. Wang, I. G. Wright, M. J. Lance, and K. C. Liu. A new approach for evaluating thin film interface fracture toughness. Material Science and Engineering A, 426:332–345, 2006.

    Google Scholar 

  18. I. Ocãna, J. M. Molina-Aldareguia, D. Gonzalez, M. R. Elizalde, J. M. Sáanchez, J. M. Martnez-Esnaola, J. Gil Sevillano, T. Scherban, D. Pantuso, B. Sun, G. Xu, B. Miner, J. He, and J. Maiz. Fracture characterization in patterned thin films by cross-sectional nanoindentation. Acta Materialia, 54:3453–3462, 2006.

    Article  Google Scholar 

  19. Yu-Fu Liu, Y. Kagawa, and A. G. Evans. Analysis of a barb test for measuring the mixed-mode delamination toughness of coatings. ActaMaterialia, 56:43–49, 2008.

    Google Scholar 

  20. J. R. Reeder and J. R. Crews. Mixed mode bending method for delamination testing. AiAA Journal, 28(7):1270–1276, 1990.

    Article  Google Scholar 

  21. W. O. Soboyejo, G. Y. Lu, S. Chengalva, J. Zhang, and V. Kenner. A modified mixed-mode bending specimen for the interfacial fracture testing of dissimilar materials. Fatigue and Fracture of Engineering Materials and Structures, 22:799–810, 1999.

    Google Scholar 

  22. C. C.Merrill and P. S. Ho. Effect of mode mixity and porosity on interface fracture of low-k dielectrics. In Materials Research Society Symposium Proceedings, volume 812, 2004.

    Google Scholar 

  23. N. Blanco, E. K. Gamstedt, J. Costa, and D. Trias. Analysis of the mixed-mode end load split delamination test. Composite Structures, 76:14–20, 2006.

    Article  Google Scholar 

  24. J. Thijsse, O. van der Sluis, J. A. W. van Dommelen, W. D. van Driel, and M. G. D. Geers. Characterization of semiconductor interfaces using a modified mixed mode bending apparatus. Microelectronics Reliability, 48:401–407, 2008.

    Article  Google Scholar 

  25. J. D. Gunderson, J. F. Brueck, and A. J. Paris. Alternate test method for interlaminar fracture toughness of composites. International Journal of Fracture, 143:273–276, 2007.

    Article  Google Scholar 

  26. J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances in AppliedMechanics, 29:63–191, 1992.

    MATH  Google Scholar 

  27. M. S. Hu and A. G. Evans. The cracking and decohesion of thin films on ductile substrates. Acta Metallurgica, 37(3):917–925, 1989.

    Article  Google Scholar 

  28. L. Banks-Sills, NahumTravitzky, and Dana Ashkenazi. Interface fracture properties of a bimaterial ceramic composite. Mechanics of Materials, 32:711–722, 2000.

    Google Scholar 

  29. A. Kuhl and J. Qu. A technique to measure interfacial toughness over a range of phase angles. Journal of Electronic Packaging, 122:147–151, 2000.

    Article  Google Scholar 

  30. X. Q. Shi, X. R. Zhang, and J. H. L. Pang. Determination of interface fracture toughness of the adhesive joint subjected to mixed-mode loading using finite element method. International Journal of Adhesion and Adhesives, 26:249–260, 2006.

    Article  Google Scholar 

  31. S. Tang, T. F. Guo, and L. Cheng. Rate dependent interface delamination in plastic IC packages. In 9th Electronics packaging technology conference, pages 680–685, 2007.

    Google Scholar 

  32. M. Kolluri, M. H. L. Thissen, J. P. M. Hoefnagels, J. A. W. van Dommelen, and M. G. D. Geers. In-situ characterization of interface delamination by a new miniaturemixedmode bending setup. International Journal of Fracture, 158:183–195, 2009.

    Article  MATH  Google Scholar 

  33. M. Kolluri, J. P.M. Hoefnagels, J. A.W. van Dommelen, and M. G. D. Geers. An improved miniature mixed mode delamination setup for in-situ microscopic interface failure analyses. Journal of Physics D: Applied Physics, 44:1–13, 2011.

    Article  Google Scholar 

  34. M. Kolluri, An in-situ experimental-numerical approach for interface delamination characterization, PhD thesis, Eindhoven University of Technology, 2011, in press.

    Google Scholar 

  35. T. Andersson and U. Stigh. The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. International Journal of Solids and Structures, 41:413–434, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. M. Hoefnagels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Hoefnagels, J.P.M., Kolluri, M., van Dommelen, J.A.W., Geers, M.G.D. (2011). An in-situ experimental-numerical approach for interface delamination characterization. In: Proulx, T. (eds) Experimental and Applied Mechanics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0222-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0222-0_68

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0221-3

  • Online ISBN: 978-1-4614-0222-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics