An in-situ experimental-numerical approach for interface delamination characterization

  • J. P. M. Hoefnagels
  • M. Kolluri
  • J. A. W. van Dommelen
  • M. G. D. Geers
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high density) integration of dissimilar materials. Predictive finite element models are used during the design and optimization stage to minimize delamination failures, however, they requires a relevant interface model to capture the (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, a set of experimental-numerical tools is presented to enable accurate characterization of delamination mechanism(s) and prediction of the interface mechanics. First, a novel Miniature Mixed Mode Bending (MMMB) delamination setup is presented that enables in-situ SEM characterization of interface delamination mechanisms while sensitively measuring global load-displacement curves for the full range of mode mixities. Accurate determination of the critical energy release rate from the global load-displacement curve requires, however, identification and separation of bulk plastic contributions from the measured total energy dissipation; to this end, an analytical procedure is presented. Finally, a cohesive zone model suitable for mixed mode loading with realistic coupling is presented that can capture the range of interface failure mechanisms from damage to plasticity, as observed in-situ with SEM, as well as a parameter identification procedure. The set of experimental-numerical tools is validated on delamination measurements of a glue interface.

Keywords

Fatigue Porosity Polyethylene Epoxy Brittle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Srikanth, L. Chan, and C. J. Vath-III. Adhesion improvement of EMC-lead frame interface using brown oxide promoters. Thin Solid Films, 504:397–400, 2006.CrossRefGoogle Scholar
  2. 2.
    K. Bose, P. A.Mataga, and P. P. Castaneda. Improved impact and delamination resistance through interleafing. Journal Key Engineering Materials, 37:317–348, 1991.Google Scholar
  3. 3.
    O. van der Sluis, C. A. Yuan, W. D. van Driel, and G. Q. Zhang. Nanopackaging. Springer US, 2009.Google Scholar
  4. 4.
    O. van der Sluis, R. A. B. Engelen, R. B. R. van Silfhout, W. D. van Driel, and M. A. J. van Gils. Efficient damage sensitivity analysis of advanced Cu/low-k bond pad structures by means of the area release energy criterion. Microelec-tronics Reliability, 47:1975–1982, 2007.CrossRefGoogle Scholar
  5. 5.
    W. D. van Driel, M. A. J. van Gils, R. B. R. van Silfhout, and G. Q. Zhang. Prediction of delamination related IC and packaging reliability problems. Microelectronics Reliability, 45:1633–1638, 2005.CrossRefGoogle Scholar
  6. 6.
    S. A. Taylor and D. J. Carr. Post failure analysis of 00/900 ultra high molecular weight polyethylene composite after ballistic testing. Journal of Microscopy, 196:249–256, 1999.CrossRefGoogle Scholar
  7. 7.
    A. Todoroki, M. Tanaka, and Y. Shimamura. Electrical resistance change method for monitoring delamination of CFRP laminates: effect of spacing between electrodes. Composites Science and Technology, 65:37–46, 2005.CrossRefGoogle Scholar
  8. 8.
    G. A. O. Davies, D. Hitchings, and J. Ankersen. Predicting delamination and de-bonding in modern aerospace composite structures. Composites Science and Technology, 66:846–854, 2006.CrossRefGoogle Scholar
  9. 9.
    R. Okada and M. T. Kortschot. The role of the resin fillet in the delamination of honeycomb sandwich structures. Composites Science and Technology, 62:1811–1819, 2002.Nix, W. D., "Mechanical properties of thin films," Metall.Trans.A., 20, 11, pp. 2217–2245, 1989.Google Scholar
  10. 10.
    C. C. Ciang, J-R. Lee, and H-J. Bang. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology, 19(122001):1–20, 2008.Google Scholar
  11. 11.
    A. G. Evans, M. Ruhle, B. J. Dalgleish, and P. G. Charalambides. The fracture energy of bimaterial interfaces. Material Science and Engineering, A126:53–64, 1990.CrossRefGoogle Scholar
  12. 12.
    G. Dreier, M. Meyer, S. Schmauder, and G. Elssner. Fracture mechanics studies of thermal mismatch using a four-point bending specimen. Acta Metallurgica and Materialia, 40:S345–S353, 1992.CrossRefGoogle Scholar
  13. 13.
    V. Gupta and A. Pronin. New technique to measure the toughness of thin-film interfaces. Journal of American Ceramic Society, 78(5):1397–1400, 1995.CrossRefGoogle Scholar
  14. 14.
    A. A. Volinsky, J. B. Vella, and W. W. Gerberich. Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films, 429:201–210, 2003.CrossRefGoogle Scholar
  15. 15.
    W. Li and T. Siegmund. An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating - substrate system. Acta Materialia, 52:2989–2999, 2004.CrossRefGoogle Scholar
  16. 16.
    L. Banks-Sills, V. Boniface, and R. Eliasi. Development of amethodology for determination of interface fracture toughness of laminate composites - the 0o/90o pair. International Journal of Solids and Structures, 42:663–680, 2005.MATHCrossRefGoogle Scholar
  17. 17.
    Jy-An. J. Wang, I. G. Wright, M. J. Lance, and K. C. Liu. A new approach for evaluating thin film interface fracture toughness. Material Science and Engineering A, 426:332–345, 2006.Google Scholar
  18. 18.
    I. Ocãna, J. M. Molina-Aldareguia, D. Gonzalez, M. R. Elizalde, J. M. Sáanchez, J. M. Martnez-Esnaola, J. Gil Sevillano, T. Scherban, D. Pantuso, B. Sun, G. Xu, B. Miner, J. He, and J. Maiz. Fracture characterization in patterned thin films by cross-sectional nanoindentation. Acta Materialia, 54:3453–3462, 2006.CrossRefGoogle Scholar
  19. 19.
    Yu-Fu Liu, Y. Kagawa, and A. G. Evans. Analysis of a barb test for measuring the mixed-mode delamination toughness of coatings. ActaMaterialia, 56:43–49, 2008.Google Scholar
  20. 20.
    J. R. Reeder and J. R. Crews. Mixed mode bending method for delamination testing. AiAA Journal, 28(7):1270–1276, 1990.CrossRefGoogle Scholar
  21. 21.
    W. O. Soboyejo, G. Y. Lu, S. Chengalva, J. Zhang, and V. Kenner. A modified mixed-mode bending specimen for the interfacial fracture testing of dissimilar materials. Fatigue and Fracture of Engineering Materials and Structures, 22:799–810, 1999.Google Scholar
  22. 22.
    C. C.Merrill and P. S. Ho. Effect of mode mixity and porosity on interface fracture of low-k dielectrics. In Materials Research Society Symposium Proceedings, volume 812, 2004.Google Scholar
  23. 23.
    N. Blanco, E. K. Gamstedt, J. Costa, and D. Trias. Analysis of the mixed-mode end load split delamination test. Composite Structures, 76:14–20, 2006.CrossRefGoogle Scholar
  24. 24.
    J. Thijsse, O. van der Sluis, J. A. W. van Dommelen, W. D. van Driel, and M. G. D. Geers. Characterization of semiconductor interfaces using a modified mixed mode bending apparatus. Microelectronics Reliability, 48:401–407, 2008.CrossRefGoogle Scholar
  25. 25.
    J. D. Gunderson, J. F. Brueck, and A. J. Paris. Alternate test method for interlaminar fracture toughness of composites. International Journal of Fracture, 143:273–276, 2007.CrossRefGoogle Scholar
  26. 26.
    J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances in AppliedMechanics, 29:63–191, 1992.MATHGoogle Scholar
  27. 27.
    M. S. Hu and A. G. Evans. The cracking and decohesion of thin films on ductile substrates. Acta Metallurgica, 37(3):917–925, 1989.CrossRefGoogle Scholar
  28. 28.
    L. Banks-Sills, NahumTravitzky, and Dana Ashkenazi. Interface fracture properties of a bimaterial ceramic composite. Mechanics of Materials, 32:711–722, 2000.Google Scholar
  29. 29.
    A. Kuhl and J. Qu. A technique to measure interfacial toughness over a range of phase angles. Journal of Electronic Packaging, 122:147–151, 2000.CrossRefGoogle Scholar
  30. 30.
    X. Q. Shi, X. R. Zhang, and J. H. L. Pang. Determination of interface fracture toughness of the adhesive joint subjected to mixed-mode loading using finite element method. International Journal of Adhesion and Adhesives, 26:249–260, 2006.CrossRefGoogle Scholar
  31. 31.
    S. Tang, T. F. Guo, and L. Cheng. Rate dependent interface delamination in plastic IC packages. In 9th Electronics packaging technology conference, pages 680–685, 2007.Google Scholar
  32. 32.
    M. Kolluri, M. H. L. Thissen, J. P. M. Hoefnagels, J. A. W. van Dommelen, and M. G. D. Geers. In-situ characterization of interface delamination by a new miniaturemixedmode bending setup. International Journal of Fracture, 158:183–195, 2009.MATHCrossRefGoogle Scholar
  33. 33.
    M. Kolluri, J. P.M. Hoefnagels, J. A.W. van Dommelen, and M. G. D. Geers. An improved miniature mixed mode delamination setup for in-situ microscopic interface failure analyses. Journal of Physics D: Applied Physics, 44:1–13, 2011.CrossRefGoogle Scholar
  34. 34.
    M. Kolluri, An in-situ experimental-numerical approach for interface delamination characterization, PhD thesis, Eindhoven University of Technology, 2011, in press.Google Scholar
  35. 35.
    T. Andersson and U. Stigh. The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. International Journal of Solids and Structures, 41:413–434, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • J. P. M. Hoefnagels
    • 1
  • M. Kolluri
    • 1
    • 2
  • J. A. W. van Dommelen
    • 1
  • M. G. D. Geers
    • 1
  1. 1.Dept. of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Materials Innovation Institute (M2i)DelftThe Netherlands

Personalised recommendations