Skip to main content

Comparison of Iterative and Direct Inversion MR Elastography Algorithms

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials, Volume 2

Abstract

Magnetic Resonance Elastography (MRE) is a medical imaging modality which aims to image the mechanical properties of tissue. Tissue stiffness maps can be calculated from measurements of the steady-state mechanical response of the tissue undegoing a low frequency (40-200Hz) mechanical excitation, which are taken using modified magnetic resonance imaging (MRI) sequences. There are two classes of methods to perform this stiffness calculation: Iterative inversion, and Direct inversion. Experiments using gelatin phantoms, consisting of a soft background and stiff inclusion, show that both methods accurately locate the inclusion. Iterative inversion provides better quantitative accuracy when compared to independent measurements using a dynamic mechanical analyzer, however, the computation time is significantly longer than direct inversions (iterative methods take hours, whereas direct inversion take seconds). The decision of which method to use for a given application must be made by weighing up the advantages of fast computation time for direct inversion against the better quantitative accuracy of iterative techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Doyley, I. Perreard, A.J. Patterson, J.B. Weaver, and K.M. Paulsen. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials. Medical Physics, 37:3970, 2010.

    Article  Google Scholar 

  2. R.L. Ehman. Science to Practice: Can MR Elastography Be Used to Detect Early Steatohepatitis in Fatty Liver Disease? Radiology, 253(1):1, 2009.

    Google Scholar 

  3. R.C. Grimm, D.S. Lake, A. Manduca, and R.L. Ehman. Mre/wave. July 2006.

    Google Scholar 

  4. L. Huwart, C. Sempoux, E. Vicaut, N. Salameh, L. Annet, E. Danse, F. Peeters, L.C. ter Beek, J. Rahier, R. Sinkus, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology, 135(1):32–40, 2008.

    Article  Google Scholar 

  5. S.A. Kruse, G.H. Rose, K.J. Glaser, A. Manduca, J.P. Felmlee, C.R. Jack, and R.L. Ehman. Magnetic resonance elastography of the brain. Neuroimage, 39(1):231–237, 2008.

    Article  Google Scholar 

  6. A. Manduca, DS Lake, SA Kruse, and RL Ehman. Spatio-temporal directional filtering for improved inversion of MR elastography images. Medical Image Analysis, 7(4):465–473, 2003.

    Google Scholar 

  7. A. Manduca, TE Oliphant, MA Dresner, JL Mahowald, SA Kruse, E. Amromin, JP Felmlee, JF Greenleaf, and RL Ehman. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Medical Image Analysis, 5(4):237–254, 2001.

    Google Scholar 

  8. A.A. Oberai, N.H. Gokhale, and G.R. Feijoo. Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Problems, 19(2):297–313, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. P.R. PerriËœnez, F.E. Kennedy, E.E.W. Van Houten, J.B. Weaver, and K.D. Paulsen. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography. IEEE transactions on biomedical engineering, 56(3), 2009.

    Google Scholar 

  10. P.R. PerriËœnez, A.J. Pattison, F.E. Kennedy, J.B. Weaver, and K.D. Paulsen. Contrast detection in fluid-saturated media with magnetic resonance poroelastography. Medical Physics, 37:3518, 2010.

    Google Scholar 

  11. I. Sack, B. Beierbach, U. Hamhaber, D. Klatt, and J. Braun. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR in Biomedicine, 21(3):265–271, 2008.

    Article  Google Scholar 

  12. A. Samani, J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversiontechnique- based investigation of 169 samples. Physics in Medicine and Biology, 52(6):1565–1576, 2007.

    Article  Google Scholar 

  13. R. Sinkus, J.L. Daire, B.E. Van Beers, and V. Vilgrain. Elasticity reconstruction: Beyond the assumption of local homogeneity. Comptes Rendus M´ecanique, 2010.

    Google Scholar 

  14. R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magnetic Resonance in Medicine, 58(6):1135–1144, 2007.

    Article  Google Scholar 

  15. R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magnetic resonance imaging, 23:159–65, 2005.

    Article  Google Scholar 

  16. R.L. Taylor. A mixed-enhanced formulation tetrahedral finite elements. International Journal for Numerical Methods in Engineering, 47(1–3):205–227, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. E. W. Van Houten. Mechanical property Reconstruction from MR Detected Harmonic Displacement Data. PhD thesis, Thayer School of Engineering at Dartmouth College, 2001.

    Google Scholar 

  18. E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, K. D. Paulsen, and J. B. Weaver. A three-parameter mechanical property reconstruction method for MR-based elastic property imaging. IEEE Trans. Medical Imaging, 24:311–324, 2005.

    Article  Google Scholar 

  19. E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen. Initial in-vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging, 17:72–85, 2003.

    Article  Google Scholar 

  20. E. E. W. Van Houten, M. I. Miga, J. B. Weaver, F. E. Kennedy, and K. D. Paulsen. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magnetic Resonance in Medicine, 45:827–837, 2001.

    Article  Google Scholar 

  21. J.B. Weaver, E.E.W. Van Houten, M.I. Miga, F.E. Kennedy, and K.D. Paulsen. Magnetic resonance elastography using 3D gradient echo measurements of steady-state motion. Medical Physics, 28:1620, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

McGarry, M.D.J., van Houten, E.E.W., Pattison, A.J., Weaver, J.B., Paulsen, K.D. (2011). Comparison of Iterative and Direct Inversion MR Elastography Algorithms. In: Proulx, T. (eds) Mechanics of Biological Systems and Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0219-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0219-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0218-3

  • Online ISBN: 978-1-4614-0219-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics