An Inverse Method to Determine Material Properties of Soft Tissues

  • Leonardo Ruggiero
  • Hugo Sol
  • Hichem Sahli
  • Sigrid Adriaenssens
  • Nele Adriaenssens
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Material characterization of soft biological tissues by mixed experimental/numerical (inverse) techniques represents a powerful tool for the analysis of their complex mechanics. However, the uncertainty related to the accuracy and capability of the technique is not yet completely investigated and understood. In this work, a quasi-static indentation procedure is implemented in order to extract the Mooney-Rivlin material parameters and the equivalent Young’s modulus for a hyperelastic rubber-like material. A non-standard approach based on a Finite Element (FE) inverse method is employed. An experimental set-up consisting of a dedicated micro-indentation system has been employed to extract reaction force values as a function of the penetration depth. A cost function, based on the square difference between experimental and numerical data, is optimized trough a modified Nelder-Mead direct search algorithm (MNMA). The accuracy of the identified parameters is discussed using results of a virtual benchmark case study.


Soft Biological Tissue Strain Energy Density Function Standard Tensile Test Inverse Technique Rubberlike Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moerman K. M., Holt C. A., Evans S. L., and Simms C. K., Digital Image Correlation and Finite Element Modeling as a Method to Determine Mechanical Properties of Human Soft Tissue In Vivo, Journal of Biomechanics, 42, 1150–1153, 2009.CrossRefGoogle Scholar
  2. 2.
    Kauer M., Inverse Finite Element Characterization of Soft Tissues with Aspiration Experiments, PhD Thesis DISS. ETH No. 14233, Swiss Federal Institute of Technology Zürich, 2001.Google Scholar
  3. 3.
    Samani A., Zubovits J., and Plewes D., Elastic Moduli of Normal and Pathological Human Breast Tissues: an Inversion Technique Based Investigation of 169 Samples, Phys. Med. Biol., 52, 1565–1576, 2007.CrossRefGoogle Scholar
  4. 4.
    Kellner A.L., Nelson T.R., Cervino L.I., and Boone J.M., Simulation of Mechanical Compression of Breast Tissue, IEEE Transactions On Biomedical Engineering, 54, 1885–1891, 2007.CrossRefGoogle Scholar
  5. 5.
    Lyyra T., Jurvelin J., Pitkänen P., Väätäinen U. and Kiviranta I., Indentation Instrument for The Measurement of Cartilage Stiffness Under Arthroscopic Control, Med. Eng. Phys., 17, 395–399, 1995.CrossRefGoogle Scholar
  6. 6.
    Vannah W. M., and Childress D. S., Indenter Tests and Finite Element Modeling of Bulk Muscolar Tissue in Vivo, Journal of Rehabilitation Research and Development, 33 (3), 239–252, 1996.Google Scholar
  7. 7.
    Rome K., and Webb P., Development of a Clinical Instrument to Measure Heel Pad Indentation, Clinical Biomechanics, 15, 298–300, 2000.CrossRefGoogle Scholar
  8. 8.
    Miller K., Chinzei K., Orssengo G., Bednarz P., Mechanical Properties of Brain Tissue In-Vivo: Experiment and Computer Simulation, Journal of Biomechanics, 33, 1369–1376, 2000.CrossRefGoogle Scholar
  9. 9.
    Han L., Burcher M., and Noble J. A., Non-Invasive Measurement of Biomechanical Properties of In-Vivo Soft Tissues, MICCAI, 2488, 208–215, 2002.Google Scholar
  10. 10.
    Korhonen R.K.,Saarakkala S., Töyräs J., Laasanen M. S., Kiviranta I., and Jurvelin J. S., Experimental and Numerical Validation of the Novel Configuration of an Arthroscopic Indentation Instrument, Phys. Med. Biol., 48, 1565–1576, 2003.CrossRefGoogle Scholar
  11. 11.
    Hu T., and Desai J.P., Characterization of Soft-Tissue Material Properties: Large Deformation Analysis, Proceedings of ISMS, 28–37, 2004.Google Scholar
  12. 12.
    Kerdok A. M., Jordan P., Liu Y., Wellman P. S., Socrate S., and Howe R. D., Identification of Nonlinear Constitutive Law Parameters of Breast Tissue, Summer Bioengeneering Conference, 22–26, 2005.Google Scholar
  13. 13.
    Liu Y., Kerdok A. E., and Howe R. D., A Nonlinear Finite Element Model of Soft Tissue Indentation, Proceedings of Medical Simulation: International Symposium - Lecture Notes in Computer Science, 3078, 67–76, 2004.CrossRefGoogle Scholar
  14. 14.
    Gales D. J., and Challis J. H., Validity of Hand-Held Heel Pad Indenter for Determining Heel Pad Properties, American Society of Biomechanics Blacksburg, VA, 2006.Google Scholar
  15. 15.
    Kim J., Ahn B., De S., and Srinivasan M.A., An Efficient Soft Tissue Characterizaion Algorithm from In Vivo Indentation Experiments for Medical Simulation, Int. J. Med. Robotics and Comput. Assist. Surg., 4, 277–285, 2008.CrossRefGoogle Scholar
  16. 16.
    Jachowicz J., McMullen R., and Prettypaul D., Indentometric Analysis of In Vivo Skin and Comparison with Artificial Skin Models,Skin Research and Technology, 13, 299–309, 2007.CrossRefGoogle Scholar
  17. 17.
    Lu M. H., Yu W., Huang Q. W., Huang Y.P., and Zheng Y. P., A Hand-Held Indentation System for the Assessment of Mechanical Properties of Soft Tissues In Vivo, IEEE Transactions on Instrumentation and Measurement, 58 (9), 3079–3085, 2009.CrossRefGoogle Scholar
  18. 18.
    Holzapfel G. A., and Austrell P. E., Similarities Between Soft Biological Tissues and Rubberlike Materials, Keri L. (eds.) ConstitutiveModels for Rubber IV, A.A. Balkema Publishers: Leiden, 607–6, 2005.Google Scholar
  19. 19.
    Chung J.H., Rajagopal V., Nielsen P. M. F., and Nash M. P., Modeling Mammographic Compression of the Breast, MICCAI, 758–765, 2008.Google Scholar
  20. 20.
    Azar F.S., Metaxa D.N., Schnall M.D., Methods for Modeling and Predicting Mechanical Deformations of the Breast Under External Perturbations, Medical Image Analysis 6, 1–27, 2002.CrossRefGoogle Scholar
  21. 21.
    Perez del Palomar A., Calvo B., Herrero J., Lopez J., and Doblar M., A Finite Element Model to Accurately Predict Real Deformations of the Breast, Med. Eng. Phys., 30, 1089–1097, 2008.Google Scholar
  22. 22.
    Gao Z., Lister K., and Desai J. P., Annals of Biomedical Engineering, 38 (2), 505–516, 2010.Google Scholar
  23. 23.
    Limtrakarn W., and Phakdeepinit W., Biomechanics Study of Knee Ligament, The First TSME International Conference on Mechanical Engineering 20–22 October, 2010.Google Scholar
  24. 24.
    Costa K.D., and Yin F.C. P., Analysis of Indetation: Implications for Measuring Mechanical Properties with Atomi c Force Microscopy, Transactions of ASME, 121, 462–471, 1999.Google Scholar
  25. 25.
    Wellman P. S., Tactile Imaging, PhD Thesis, Division of Engineering and Applied Sciences. Cambridge, Harvard University, 137, 1999.Google Scholar
  26. 26.
    Namani R., and Simha N., Inverse Finite Element Analysis of Indentation Tests to Determine Hyperelastic Parameters of Soft-Tissue Layers, J. Strain Analysis, 44, 347–362, 2009.CrossRefGoogle Scholar
  27. 27.
    Timoshenko S., and Goodier J.N., Theory of Elasticity, McGRAW-HILL, BOOK COMPANY, Inc. 1951.MATHGoogle Scholar
  28. 28.
    Holzapfel G. A., JOHN WILEY & SONS, LTD eds., Nonlinear Solid Mechanics a Continuum Approach for Engineering, 2004.Google Scholar
  29. 29.
    Abaqus 6.10 Online Documentation © Dassault Systèmes, 2010Google Scholar
  30. 30.
    Lyyra-Laitinen T., Niinimäki M., Töyräs J., Lindgren R., Kiviranta I., and Jurvelin J.S., Optimization of the Arthroscopic Indentation Instrument for the Measurement of Thin Cartilage Stiffness, Phys. Med. Biol., 2511–2524, 1999.Google Scholar
  31. 31.
    ASTM D412 - 06ae2 Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leonardo Ruggiero
    • 1
    • 2
  • Hugo Sol
    • 1
  • Hichem Sahli
    • 2
  • Sigrid Adriaenssens
    • 1
  • Nele Adriaenssens
    • 3
  1. 1.Mechanics of Materials and Constructions (MeMC)Vrije Univeristeit BrusselBrusselBelgium
  2. 2.Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselBelgium
  3. 3.Lymfoedeem en Revalidatiewetenschappen en Kinesitherapie (LYMF-KINE)Vrije Universiteit BrusselBrusselBelgium

Personalised recommendations