Skip to main content

Numerical simulation of hot imprint process of periodical lamellar microstructure into polycarbonate

  • Conference paper
  • First Online:
Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3

Abstract

Thermoplastic polymers are frequently used in the industry. They represent the most important group of polymeric materials. Most of all, injection molding, extrusion, spinning and hot embossing are used for plastic processing. Today polymers are used in precision systems. So it is necessary to create new powerful modeling and analyzing tools. A finite element model for hot imprint process of periodical microstructure into polycarbonate has been developed. In the finite element model polycarbonate is assumed to be a nonlinear elasto-plastic material. The model covers the main three steps of hot imprint process: polycarbonate heating, imprinting and demolding. Periodical lamellar microstructure was chosen as die in the hot imprint process, because it is common structure in the practice. The model is solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between die and polycarbonate. This multiphysics polycarbonate hot imprint model includes the heat transport, structural mechanical stresses and deformations resulting from the temperature distribution. Finite-element simulation of the hot imprint process has been performed using COMSOL Multiphysics. Nonlinear elasto-plastic model was created. It allows evaluation of temperature distributions and stresses in the polycarbonate during hot imprint process. Obtained theoretical results were compared with experimental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heckele M., Schomburg W. K. Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, vol. 14, no. 3, p. R1-R14, 2004.

    Article  Google Scholar 

  2. Quake S. R., Scherer A. From micro- to nanofabrication with soft materials. Science 290, p. 1536–40.

    Google Scholar 

  3. Yoshihiko H., Yoshida S., Nobuyuki T. Defect analysis in thermal nanoimprint lithography. J. Vac. Sci. Technol. B 212765–70, 2003.

    Google Scholar 

  4. Yoshihiko H., Takaaki K., Takashi Y. Simulation and experimental study of polymer deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, B22, p. 3288–93, 2004.

    Google Scholar 

  5. Worgull M., Heckele M., Hetu J. F., Kabanemi K. K. Modeling and optimization of the hot embossing process for microand nanocomponent fabrication, J. Microlith., Microfab., Microsyst. 5, 011005, 2006.

    Google Scholar 

  6. Reiter J., Pierer R. Thermo-mechanical simulation of a laboratory test to determine mechanical properties of steel near the solidus temperature, Excerpt from the Proceedings of the COMSOL Multiphysics User's Conference. – Frankfurt, 2005.

    Google Scholar 

  7. Jin P., Gao Y., Liu T., Tan J., Wang Z., Zhou H. Simulation and experimental study on recovery of polymer during hot embossing, The Japan Society of Applied Physics, p. 06FH10-1 – 06FH10-4, 2009.

    Google Scholar 

  8. Lan S., Lee H. J., Lee S. H., Ni J., Lai X., Lee H. W., Song J. H., Lee M. G. Experimental and numerical study on the viscoelastic property of polycarbonate near glass transition temperature for micro thermal imprint process, Materials and design, vol. 30, p. 3879–3884, 2009.

    Article  Google Scholar 

  9. Yao D., Virupaksha V. L., Kim B. Study on Squeezing Flow During Nonisothermal Embossing of Polymer Microstructures, Polymer engineering and science, vol. 45, no. 5, p. 652–660, 2005.

    Article  Google Scholar 

  10. Hung C., Chen R. H., Lin C. R. The Characterization and Finite-Element Analysis of a Polymer under Hot Pressing, Advanced Manufacturing Technology, vol. 20, no. 3, p. 230–235, 2002.

    Article  Google Scholar 

  11. Becker H., Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators, vol. 83, p. 130–135, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Gaidys, R., Narijauskaitė, B., Palevičius, A., Janušas, G. (2011). Numerical simulation of hot imprint process of periodical lamellar microstructure into polycarbonate. In: Proulx, T. (eds) Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0213-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0213-8_40

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0212-1

  • Online ISBN: 978-1-4614-0213-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics