Skip to main content

Energy balance properties of steels subjected to high cycle fatigue

  • Conference paper
  • First Online:

Abstract

This paper presents an experimental protocol developed to locally estimate different energy balance terms associated with the high cycle fatigue (HCF) of steels. Deformation and dissipated energy are respectively derived from displacement and temperature fields obtained using digital image correlation (DIC) and quantitative infrared thermography (QIRT) techniques. The combined processing of visible and infrared images reveals the precocious, gradual and heterogeneous development of fatigue localization zones. It also highlights the plastic character of dissipative heat sources (i.e. proportional to the loading frequencies), and the progress of fatigue dissipation, observing the drift of the mean dissipation per cycle for a given loading. The substantial of internal energy variations during HCF loading are finally underlined. The paper ends with a discussion on the consequences of such energy balance properties in terms of HCF modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luong, M. P., Fatigue limit evaluation of metals using an infrared thermographic technique. Mech. of Mat., 28,155-163, 1998.

    Article  Google Scholar 

  2. La Rosa, G. and Risitano, A., Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. of Fatigue, 22, 1, 65–73, 2002.

    Article  Google Scholar 

  3. Cugy, P. and Galtier, A., Microplasticity and temperature increase in low carbon steels. Proc. 8th Int. Fatigue Conference, Stockholm, 549–556, 2002.

    Google Scholar 

  4. Mabru, C. and Chrysochoos, A., Dissipation et couplages accompagnant la fatigue des matériaux métalliques. Proc. Photomécanique’ 01, Poitiers, 375–382, 2001.

    Google Scholar 

  5. Boulanger, T., Chrysochoos, A., Mabru, C. and Galtier, A., Calorimetric and thermoelastic effects associated with the fatigue behavior of steels., Int. J. of Fatigue, 26, 221–229, 2004.

    Google Scholar 

  6. Morabito, A.E., Chrysochoos, A., Dattoma, V., Galietti, U., Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys, Int. J. of Fatigue, 29, 977–984, 2007.

    Article  Google Scholar 

  7. Berthel, B., Chrysochoos, A., Wattrisse, B., Galtier, A., Infrared Image Processing for the Calorimetric Analysis of Fatigue Phenomena, Exp. Mech., 48,1, 79–90, 2008.

    Google Scholar 

  8. Germain, P., Nguyen, Q. S and Suquet, P., Continuum Thermomechanics, J. Appl. Mech., 50 (4B), 1010–1020, 1983.

    Google Scholar 

  9. Honorat, V., Moreau, S., Muracciole, J.-M., Wattrisse, B., Chrysochoos, A., Calorimetric analysis of polymer behaviour using a pixel calibration of an IRFPA camera, Int. J. on Quantitative Infrared Thermography, 2 (2), 153–172, 2005.

    Article  Google Scholar 

  10. Chrysochoos, A., Wattrisse, B., Muracciole, J.-M., El Kaïm, Y., Fields of stored energy associated with localized necking of steel, J. of Mechanics of Sol. and Struct., 4 (2), 245–262, 2009.

    Google Scholar 

  11. Mughrabi, H., Dislocation wall and cell structures and long range internal stresses in deformed metal crystals, Acta Metallurgica, 31, (9), 1367–1379, 1983.

    Google Scholar 

  12. Chrysochoos, A., Berthel, B., Latourte, F., Pagano, S., Wattrisse, B., Galtier, A., Local energy approach to fatigue of steel, J. of Strain Anal. for Engngn Design, 43 (6), 411–421, 2008.

    Article  Google Scholar 

  13. Kaleta, J., Determination of cold work energy in LCF/HCF region. Proc. of 4th Int. Conf. on LCF and Elasto- Plastic Behaviour of Materials, Garmisch-Partenkirchen, 93–98, 1998.

    Google Scholar 

  14. Dulieu-Barton, J, Stanley, P, Development and applications of thermoelastic stress analysis, J. Strain Anal. Engng. Design, 33 (2), 93–104, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Chrysochoos, A., Blanche, A., Berthel, B., Wattrisse, B. (2011). Energy balance properties of steels subjected to high cycle fatigue. In: Thermomechanics and Infra-Red Imaging, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0207-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0207-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0206-0

  • Online ISBN: 978-1-4614-0207-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics