Skip to main content

Biosensors for the Detection of E. coli O157:H7 in Source and Finished Drinking Water

  • Chapter
  • First Online:

Part of the book series: Protecting Critical Infrastructure ((PCIN,volume 2))

Abstract

Current research to develop biosensors for the detection of pathogens and indicator organisms in source and finished water is motivated by their potential for rapid analysis compared to laborious and time-consuming cultural methods. There is great diversity in the biosensors being developed to detect E. coli O157:H7, both immunosensors that capture and detect whole cells and genosensors that capture and detect target nucleic acids. All biosensor designs must address both sensitivity and pathogen specificity, in order to minimize both false positives and false negatives. Improvements in sensitivity have resulted from the use of new labeling technologies, especially liposomes, which can encapsulate a large number of fluorescent dye molecules, and quantum dots, which emit a much brighter signal that conventional fluorescent dyes. Some biosensors have been designed to detect viable pathogens, including genosensors that detect transcription of a heat shock gene exclusively in viable cells. An inherent limitation of biosensors is the small capture surface in relation to the large volumes of water that must be sampled in order to assess the public health risk. This necessitates effective concentration methods; however, few researchers have specified how samples would be concentrated. Instead, most biosensors have only been tested in the laboratory using small volumes (<1 mL) of buffer seeded with different concentrations of E. coli O157:H7. Field testing in pilot-scale treatment plants with blind seeding is recommended in order to validate biosensors for the water industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Hamid I, Ivnitski D, Atansaov P, Wilkins E (1999) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosensors and Bioelectronics 14:309–316

    Article  Google Scholar 

  • Baeumner A J, Cohen R J, Miksic V, Min J (2003) RNA biosensor for the rapid detection of viable Escherichia coli. Biosensors and Bioelectronics 18:405–413

    Article  Google Scholar 

  • Baeumner A J, Pretz J, Fang S (2004) A universal nucleic acid sequence biosensor with nanomolar detection limits. Analytical Chemistry 76:888–894

    Article  Google Scholar 

  • Brewster J D, Mazenko R S (1998) Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. Journal of Immunological Methods 211:1–8

    Article  Google Scholar 

  • Call D R, Brockman F J, Chandler D P (2001) Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. International Journal of Food Microbiology 67:71–80

    Article  Google Scholar 

  • Campbell G A, Mutharasan R (2007) A method of measuring Escherichia coli O157:H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor. Environmental Science and Technology 41:1668–1674

    Article  Google Scholar 

  • Chen C-S, Yao J, Durst R A (2006) Liposome encapsulation of fluorescent nanoparticles: quantum dots and silica nanoparticles. Journal of Nanoparticle Research 8:1033–1038

    Article  Google Scholar 

  • Deisingh A K, Thompson M (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. Journal of Applied Microbiology 96:419–429

    Article  Google Scholar 

  • Derzon M, Hopkins M, Galambos P, Achyuthan K, Bourdon C, Brener I, James C, McClain J, Peterson D, Rahimian K, Timlin J, Cullor J, Kaminski M, Peck V, Spink E, Yun C, Ludwig G (2009) Timely multi-threat biological, chemical and nuclide detection: a platform, a metric, key results. International Journal of Technology Transfer and Commercialisation 7: 413–435

    Article  Google Scholar 

  • Dunbar S, Vander Zee C A, Oliver K G, Karem K L, Jacobson J W (2003) Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP™ system. Journal of Microbiological Methods 53:245–252

    Article  Google Scholar 

  • Edwards K A, Baeumner A J (2006) Liposomes in analyses. Talanta 68:1421–1431

    Article  Google Scholar 

  • Eum N-S, Yeom S-H, Kwon D-H, Kim H-R, Kang S-W (2010) Enhancement of sensitivity using gold nanorods – antibody conjugator for detection of E. coli O157:H7. Sensors and Actuators B 143:784–788

    Article  Google Scholar 

  • Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different food contaminants. Biosensors and Bioelectronics 22:1544–1549

    Article  Google Scholar 

  • Gehring A G, Irwin P L, Reed S A, Tu S-I, Andreotti P E, Akhavan-Tafti H, Handley R S (2004) Enyzme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. Journal of Immunological Methods 293:97–106

    Article  Google Scholar 

  • Goldman E R, Medintz I L, Mattoussi H (2006) Luminescent quantum dots in immunoassays. Analytical and Bioanalytical Chemistry 384:560–563

    Article  Google Scholar 

  • Hahn M A, Tabb J S, Krauss T D (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Analytical Chemistry 77:4861–4869

    Article  Google Scholar 

  • Ho J A, Hsu H-W, Huang M-R (2004) Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Analytical Biochemistry 330:342–349

    Article  Google Scholar 

  • Huang X J, Zhang Y Y (2006) Electrical determination of E. coli O157:H7 using tin-oxide nanowire coupled with microfluidic chip. IEEE Sensors Journal 6:1376–1377

    Article  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics 14:599–624

    Article  Google Scholar 

  • Johnson-White B, Lin B C, Ligler F S (2007) Combination of immunosensor detection with viability testing and confirmation using the polymerase chain reaction and culture. Analytical Chemistry 79:140–146

    Article  Google Scholar 

  • LaGier M, Scholin C, Fell J, Wang J, Goodwin K (2005) An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. Marine Pollution Bulletin 50:1251–1261

    Article  Google Scholar 

  • Lazacka O, Del Campo F J, Munoz F X (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22:1205–1217

    Article  Google Scholar 

  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 32:3–13

    Article  Google Scholar 

  • Liao W-C, Ho J A (2009) Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Analytical Chemistry 81:2470–2476

    Article  Google Scholar 

  • Ligler F S, Sapsford K, Golden J, Schriver-Lake L, Taitt C, Dyer M, Barone S, Myatt C J (2007) The array biosensor: portable, automated systems. Analytical Sciences 23:5–10

    Article  Google Scholar 

  • Lim C T, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosensors and Bioelectronics 22:1197–2104

    Article  Google Scholar 

  • Lim D V, Simpson J M, Kearns E A, Kramer M F (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews 18: 583–607

    Article  Google Scholar 

  • Lu Q, Lin H, Ge S, Luo S, Cai Q, Grimes C A (2009) Wireless, remote-query, and high sensitivity Escherichia coli O157:H7 biosensor based on the recognition action of concanavalin A. Analytical Chemistry 81:5846–5850

    Article  Google Scholar 

  • Mao X, Yang L, Su X-L, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics 21:1178–1185

    Article  Google Scholar 

  • Meeusen C A, Alocilja E C, Osburn W N (2005) Detection of E. coli O157:H7 using a miniaturized surface plasmon resonance biosensor. Transactions of the ASAE 48:2409–2416

    Google Scholar 

  • Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Science 20:1113–1126

    Article  Google Scholar 

  • Morales-Morales H A, Vidal G, Olszewski J, Rock C M, Dasgupta D, Oshima K H, Smit G B (2003) Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Applied and Environmental Microbiology 67:4098–4102

    Article  Google Scholar 

  • Ngundi M M, Kulagina N V, Anderson G P, Taitt C R (2006) Non-antibody-based recognition: alternative molecules for detection of pathogens. Expert Reviews in Proteomics 3: 511–524

    Article  Google Scholar 

  • Noble R T, Weisberg S B (2007) A review of technologies for rapid detection of bacteria in recreational waters. Journal of Water and Health 03.4:381–392

    Google Scholar 

  • Nocker A, Burr M, Camper A K (2009) Synthesis document on molecular techniques for the drinking water industry. Water Research Foundation, Denver, CO, USA

    Google Scholar 

  • Poitras C, Tufenkji N (2009) A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosensors and Bioelectronics 24:2137–2142

    Article  Google Scholar 

  • Radke S M, Alocilja E C (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics 20:1662–1667

    Article  Google Scholar 

  • Rasooly A, Herold K E (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. Journal of the AOAC International 89:873–883

    Google Scholar 

  • Reidt U, Chauhan L, Muller G, Molz R, Lindner P, Wolf H, Friedberger A (2008) Reproducible filtration of bacteria with micromechanical filters. Journal of Rapid Methods and Automation in Microbiology 16:337–350

    Article  Google Scholar 

  • Rijal K, Leung A, Shankar P M, Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 at 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics 21:871–880

    Article  Google Scholar 

  • Rose J B, Grimes D J (2001) Reevaluation of microbial water quality: powerful tools for detection and risk assessment. American Academy of Microbiology. Washington, DC

    Google Scholar 

  • Sapsford K E, Ngundi M M, Moore M H, Lassman M E, Shriver-Lake L C, Taitt C R, Ligler F S (2006) Rapid detection of foodborne contaminants using Array Biosensor. Sensors and Actuators B 113:599–607

    Article  Google Scholar 

  • Song J M, Kwon H T (2009) Photodiode array on-chip biosensor for the detection of E. coli O157:H7 pathogenic bacteria. Methods in Molecular Biology: Biosensors and Bioprotection 503:325–335

    Article  Google Scholar 

  • Straub T M, Dockendorff B P, Quinonez-Diaz M D, Valdez C O, Shutthanandan J I, Tarasevich B J, Grate J W, Bruckner-Lea C J (2005) Automated methods for multiplexed pathogen detection. Journal of Microbiological Methods 62:303–316

    Article  Google Scholar 

  • Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Analytical Chemistry 76:4806–4810

    Article  Google Scholar 

  • Su X-L, Li Y (2005) Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157:H7. Transactions of the ASAE 48:405–413

    Google Scholar 

  • Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics 21:998–1006

    Article  Google Scholar 

  • Taylor A D, Yu Q, Chen S, Homola J, Jiang S (2005) Comparison of E. coli O157:H7 preparations methods used for detection with surface plasmon resonance sensor. Sensors and Actuators B 107:202–208

    Article  Google Scholar 

  • Teles F R R, Fonseca L P (2008) Trends in DNA biosensors. Talanta 77:606–623

    Article  Google Scholar 

  • Tims T B, Lim D V (2003) Confirmation of viable E. coli O157:H7 by enrichment and PCR after rapid biosensor detection. Journal of Microbiological Methods 55:141–147

    Article  Google Scholar 

  • Tu S-I, Uknalis J, Yamashoji S, Gehring A, Irwin P (2005) Luminescent methods to detect viable and total Escherichia coli O157:H7 in ground beef. Journal of Rapid Methods and Automation in Microbiology 13:57–70

    Article  Google Scholar 

  • US Food and Drug Administration (2009) Bad bug book: foodborne pathogenic microorganisms and natural toxins handbook. Rockville, MD

    Google Scholar 

  • Wang L, Liu Q, Hu Z, Zhang Y, Wu C, Yang Mo, Wang P (2009) A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 detection. Talanta 78:647–652

    Article  Google Scholar 

  • Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT Food Science and Technology 40:187–192

    Article  Google Scholar 

  • Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth J, Feller K A (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosensors and Bioelectronics 22:1368–1375

    Article  Google Scholar 

  • Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescent labels. Analyst 131:394–401

    Article  Google Scholar 

  • Zhao W, Yao S, Hsing I-M (2006) A microsystem compatible strategy for viable Escherichia coli detection. Biosensors and Bioelectronics 21:1163–1170

    Article  Google Scholar 

  • Zhu P, Shelton D R, Karns J S, Sundaram A, Li S, Amstutz P, Tang C-M (2005) Detection of water-borne E. coli O157:H7 using the integrating waveguide biosensor. Biosensors and Bioelectronics 21:678–683

    Article  Google Scholar 

  • Zordan M, Grafton M, Acharya G, Reece L, Cooper C, Aronson A, Park K, Leary J (2009) Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry 75A:155–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Burr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burr, M.D., Nocker, A., Camper, A.K. (2011). Biosensors for the Detection of E. coli O157:H7 in Source and Finished Drinking Water. In: Clark, R., Hakim, S., Ostfeld, A. (eds) Handbook of Water and Wastewater Systems Protection. Protecting Critical Infrastructure, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0189-6_12

Download citation

Publish with us

Policies and ethics