The Genetic Basis of Addiction

  • Chad EppsEmail author
  • Elizabeth Laura Wright


Addiction is a complex disease infl uenced by genetic, environmental, developmental, and social factors. Once viewed as a moral weakness in character, substance use disorders are now defi ned as maladaptive patterns of substance use leading to inability to control use despite signifi cant consequences in the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [ 1 ]. Family, adoption, and twin studies support the importance of biologic factors and prompted the search for an inherited link. Because addiction is a heterogeneous and complex disorder without a clear Mendelian pattern, identifi cation of specifi c genes has proved challenging.


Nicotine Dependence Ventral Striatum Addictive Behavior Borderline Personality Disorder Opioid Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Psychiatric Association. Diagnostic criteria from DSM-IV-TR. Washington, DC: American Psychiatric Association; 2000.Google Scholar
  2. 2.
    Lowinson JH. Substance abuse: a comprehensive textbook. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. 37.Google Scholar
  3. 3.
    Blum K, Noble EP, Sheridan PJ, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA. 1990;263(15):2055–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol. 2009;20(1):1–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Bowirrat A, Oscar-Berman M. Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. Am J Med Genet B Neuropsychiatr Genet. 2005;132B(1):29–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Maccioni P, Colombo G. Role of the GABA(B) receptor in alcohol-seeking and drinking behavior. Alcohol. 2009;43(7):555–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lobo IA, Harris RA. GABA(A) receptors and alcohol. Pharmacol Biochem Behav. 2008;90(1):90–4.PubMedCrossRefGoogle Scholar
  8. 8.
    McHugh RK, Hofmann SG, Asnaani A, Sawyer AT, Otto MW. The serotonin transporter gene and risk for alcohol dependence: a meta-analytic review. Drug Alcohol Depend. 2010;108(1–2):1–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Enoch MA, Gorodetsky E, Hodgkinson C, Roy A, Goldman D. Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Mol Psychiatry. 2010. doi: 10.1038/mp.2010.94.
  10. 10.
    Chen J, Lipska BK, Halim N, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Mazei MS, Pluto CP, Kirkbride B, Pehek EA. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res. 2002;936(1–2):58–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98(12):6917–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry. 2002;159(4):652–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Enoch MA, Xu K, Ferro E, Harris CR, Goldman D. Genetic origins of anxiety in women: a role for a functional catechol-O-methyltransferase polymorphism. Psychiatr Genet. 2003;13(1):33–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Smolka MN, Schumann G, Wrase J, et al. Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. J Neurosci. 2005;25(4):836–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Ducci F, Goldman D. Genetic approaches to addiction: genes and alcohol. Addiction. 2008;103(9):1414–28.PubMedCrossRefGoogle Scholar
  17. 17.
    Craddock N, Owen MJ, O’Donovan MC. The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry. 2006;11(5):446–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Sher KJ, Grekin ER, Williams NA. The development of alcohol use disorders. Annu Rev Clin Psychol. 2005;1:493–523.PubMedCrossRefGoogle Scholar
  19. 19.
    National Institute on Alcohol Abuse and Alcoholism. Accessed 1 Oct 2010.
  20. 20.
    Edenberg HJ, Foroud T. The genetics of alcoholism: identifying specific genes through family studies. Addict Biol. 2006;11(3–4):386–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Gelernter J, Kranzler HR. Genetics of drug dependence. Dialogues Clin Neurosci. 2010;12(1):77–84.PubMedGoogle Scholar
  22. 22.
    Renner JA. Alcoholism and alcohol abuse. In: Stern A, Herman J, editors. Massachusetts General Hospital Psychiatry and Board Preparation. 2nd ed. New York: McGraw Hill; 2004. p. 73–84.Google Scholar
  23. 23.
    Cloninger CR, Bohman M, Sigvardsson S. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry. 1981;38(8):861–8.PubMedGoogle Scholar
  24. 24.
    Prescott CA, Caldwell CB, Carey G, Vogler GP, Trumbetta SL, Gottesman II. The Washington University Twin Study of alcoholism. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):48–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Matthews J, Moylan A. Substance-related disorders; cocaine and narcotics. In: Stern A, Herman J, editors. Massachusetts General Hospital Psychiatry and Board Preparation. 2nd ed. New York: McGraw Hill; 2004. p. 85–96.Google Scholar
  26. 26.
    Mahajan SD, Aalinkeel R, Reynolds JL, et al. Therapeutic targeting of “DARPP-32”: a key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. Int Rev Neurobiol. 2009;88:199–222.PubMedCrossRefGoogle Scholar
  27. 27.
    Begleiter H, Porjesz B. What is inherited in the predisposition toward alcoholism? A proposed model. Alcohol Clin Exp Res. 1999;23(7):1125–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Hopfer CJ, Stallings MC, Hewitt JK. Common genetic and environmental vulnerability for alcohol and tobacco use in a volunteer sample of older female twins. J Stud Alcohol. 2001;62(6):717–23.PubMedGoogle Scholar
  29. 29.
    Schlaepfer IR, Hoft NR, Ehringer MA. The genetic components of alcohol and nicotine co-addiction: from genes to behavior. Curr Drug Abuse Rev. 2008;1(2):124–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284(20):2606–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Grant BF, Hasin DS, Chou SP, Stinson FS, Dawson DA. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2004;61(11):1107–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Di Sclafani V, Finn P, Fein G. Treatment-naive active alcoholics have greater psychiatric comorbidity than normal controls but less than treated abstinent alcoholics. Drug Alcohol Depend. 2008;98(1–2):115–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Eaton NR, Krueger RF, Keyes KM, et al. Borderline personality disorder co-morbidity: relationship to the internalizing? Externalizing structure of common mental disorders. Psychol Med. 2011;41:1041–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Klungsoyr O, Nygard JF, Sorensen T, Sandanger I. Cigarette smoking and incidence of first depressive episode: an 11-year, population-based follow-up study. Am J Epidemiol. 2006;163(5):421–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Grant BF, Stinson FS, Dawson DA, Chou SP, Ruan WJ, Pickering RP. Co-occurrence of 12-month alcohol and drug use disorders and personality disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2004;61(4):361–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther. 2004;103(2):121–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;7(1):69–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Dackis CA, O’Brien CP. Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat. 2001;21(3):111–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Cohen BM, Carlezon Jr WA. Can’t get enough of that dopamine. Am J Psychiatry. 2007;164(4):543–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89(4):1379–412.PubMedCrossRefGoogle Scholar
  41. 41.
    Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81(1):299–343.PubMedGoogle Scholar
  42. 42.
    Gerrits MA, Lesscher HB, van Ree JM. Drug dependence and the endogenous opioid system. Eur Neuropsychopharmacol. 2003;13(6):424–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Margolis EB, Fields HL, Hjelmstad GO, Mitchell JM. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci. 2008;28(48):12672–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Ward SJ, Roberts DC. Microinjection of the delta-opioid receptor selective antagonist naltrindole 5′-isothiocyanate site specifically affects cocaine self-administration in rats responding under a progressive ratio schedule of reinforcement. Behav Brain Res. 2007;182(1):140–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Bonson KR, Grant SJ, Contoreggi CS, et al. Neural systems and cue-induced cocaine craving. Neuropsychopharmacology. 2002;26(3):376–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Williams MJ, Adinoff B. The role of acetylcholine in cocaine addiction. Neuropsychophar-macology. 2008;33(8):1779–97.PubMedCrossRefGoogle Scholar
  47. 47.
    Kirsch P, Reuter M, Mier D, et al. Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neurosci Lett. 2006;405(3):196–201.PubMedCrossRefGoogle Scholar
  48. 48.
    Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci USA. 2009;106(2):617–22.PubMedCrossRefGoogle Scholar
  49. 49.
    van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology. 2009;34(13):2758–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA. 1998;95(16):9608–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Beyer A, Koch T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem. 2004;89(3):553–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280(38):32618–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Szeto CY, Tang NL, Lee DT, Stadlin A. Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport. 2001;12(6):1103–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Tan EC, Tan CH, Karupathivan U, Yap EP. Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport. 2003;14(4):569–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Kapur S, Sharad S, Singh RA, Gupta AK. A118g polymorphism in mu opioid receptor gene (oprm1): association with opiate addiction in subjects of Indian origin. J Integr Neurosci. 2007;6(4):511–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Bart G, Heilig M, LaForge KS, Pollak L, Leal SM, Ott J, et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry. 2004;9(6):547–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Drakenberg K, Nikoshkov A, Horvath MC, Fagergren P, Gharibyan A, Saarelainen K, et al. Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Natl Acad Sci USA. 2006;103(20):7883–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim SA, Kim JW, Song JY, Park S, Lee HJ, Chung JH. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients. Alcohol. 2004;34(2–3):115–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim SG. Gender differences in the genetic risk for alcohol dependence – the results of a ­pharmacogenetic study in Korean alcoholics. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2009;44(6):680–5.PubMedGoogle Scholar
  60. 60.
    Kim SG, Kim CM, Choi SW, Jae YM, Lee HG, Son BK, et al. A micro opioid receptor gene polymorphism (A118G) and naltrexone treatment response in adherent Korean alcohol-dependent patients. Psychopharmacology (Berl). 2009;201(4):611–8.CrossRefGoogle Scholar
  61. 61.
    Nishizawa D, Han W, Hasegawa J, Ishida T, Numata Y, Sato T, et al. Association of mu-opioid receptor gene polymorphism A118G with alcohol dependence in a Japanese population. Neuropsychobiology. 2006;53(3):137–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Bart G, Kreek MJ, Ott J, LaForge KS, Proudnikov D, Pollak L, et al. Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology. 2005;30(2):417–22.PubMedCrossRefGoogle Scholar
  63. 63.
    van den Wildenberg E, Wiers RW, Dessers J, Janssen RG, Lambrichs EH, Smeets HJ, et al. A functional polymorphism of the mu-opioid receptor gene (OPRM1) influences cue-induced craving for alcohol in male heavy drinkers. Alcohol Clin Exp Res. 2007;31(1):1–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Miranda R, Ray L, Justus A, Meyerson LA, Knopik VS, McGeary J, et al. Initial evidence of an association between OPRM1 and adolescent alcohol misuse. Alcohol Clin Exp Res. 2010;34(1):112–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology. 2008;109(3):520–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Tan EC, Lim EC, Teo YY, Lim Y, Law HY, Sia AT. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol Pain. 2009;5:32.PubMedCrossRefGoogle Scholar
  67. 67.
    Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand. 2006;50(7):787–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83(4):559–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Oertel BG, Schmidt R, Schneider A, Geisslinger G, Lotsch J. The mu-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet Genomics. 2006;16(9):625–36.PubMedCrossRefGoogle Scholar
  70. 70.
    Ray LA, Hutchison KE. A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res. 2004;28(12):1789–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Oslin DW, Berrettini WH, O’Brien CP. Targeting treatments for alcohol dependence: the pharmacogenetics of naltrexone. Addict Biol. 2006;11(3–4):397–403.PubMedCrossRefGoogle Scholar
  72. 72.
    Ray LA, Hutchison KE. Effects of naltrexone on alcohol sensitivity and genetic moderators of medication response: a double-blind placebo-controlled study. Arch Gen Psychiatry. 2007;64(9):1069–77.PubMedCrossRefGoogle Scholar
  73. 73.
    Anton RF, Oroszi G, O’Malley S, Couper D, Swift R, Pettinati H, et al. An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch Gen Psychiatry. 2008;65(2):135–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations