Skip to main content

Competition in High Dimensional Spaces Using a Sparse Approximation of Neural Fields

  • Conference paper
From Brains to Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 718))

Abstract

The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.

This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahakoon, D., Halgamuge, S.K., Srinivasan, B.: Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Netw. 11(3), 601–614 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  PubMed  CAS  Google Scholar 

  3. Barandiaran, X.E., Di Paolo, E., Rohde, M.: Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 17(5), 367–386 (2009)

    Article  Google Scholar 

  4. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    Google Scholar 

  5. Bickhard, M.H., Christensen, W.D.: Process dynamics of normative function. Monist 85(1), 3–28 (2002)

    Google Scholar 

  6. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    PubMed  CAS  Google Scholar 

  7. Brodmann, K.: Brodmann’s ‘Localisation in the Cerebral Cortex’. Smith-Gordon, London (1909/1994)

    Google Scholar 

  8. Burnod, Y.: An Adaptive Neural Network: The Cerebral Cortex. Masson, Paris (1989)

    Google Scholar 

  9. Castellanos Sánchez, C., Girau, B.: Dynamic pursuit with a bio-inspired neural model. In: Advanced Concepts for Intelligent Vision Systems—ACIVS 2005. Lecture Notes in Computer Science, vol. 3708, pp. 284–291 (2005)

    Chapter  Google Scholar 

  10. Chevallier, S., Tarroux, P.: Visual focus with spiking neurons. In: European Symposium on Artificial Networks—Advances in Computational Intelligence and Learning (ESANN’2008), Bruges, April, pp. 23–25 (2008)

    Google Scholar 

  11. Childs, J., Lu, C.-C., Potter, J.: A fast, space-efficient algorithm for the approximation of images by an optimal sum of Gaussians. In: Graphics Interface, pp. 153–162 (2000)

    Google Scholar 

  12. CIE (Commission Internationale d’Eclairage): Colorimetry, 3rd edn. publication 15. Technical report, CIE Central Bureau, Vienna (2004)

    Google Scholar 

  13. Denève, S., Duhamel, J.-R., Pouget, A.: Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of Kalman filters. J. Neurosci. 27(21), 5744–5756 (2007)

    Article  PubMed  Google Scholar 

  14. Díaz, J., Ros, E., Mota, S., Botella, G., Cañas, A., Sabatini, S.: Optical flow for cars overtaking monitor: the rear mirror blind spot problem. Technical report, Ecovision (European research project) (2003)

    Google Scholar 

  15. Goshtasby, A., O’Neill, W.D.: Curve fitting by a sum of Gaussians. CVGIP, Graph. Models Image Process. 56(4), 281–288 (1994)

    Article  Google Scholar 

  16. Hubel, D.N., Wiesel, T.H.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–54 (1962)

    PubMed  Google Scholar 

  17. Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry: Evolving gasnets for robot control. Connect. Sci. 10(3–4), 185–210 (1998)

    Article  Google Scholar 

  18. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  19. Kohonen, T.: Self-organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  20. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  Google Scholar 

  21. Ménard, O., Frezza-Buet, H.: Model of multi-modal cortical processing: coherent learning in self-organizing modules. Neural Netw. 18(5–6), 646–55 (2005)

    Article  PubMed  Google Scholar 

  22. Mountcastle, V.B.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20(4), 408–434 (1957)

    PubMed  CAS  Google Scholar 

  23. Quinton, J.-C.: Exploring and optimizing dynamic neural fields parameters using genetic algorithms. In: Proceedings of IEEE World Congress on Computational Intelligence (IJCNN’2010), Barcelona, Spain, 2010

    Google Scholar 

  24. Quinton, J.-C., Buisson, J.-C.: Multilevel anticipative interactions for goal oriented behaviors. In: Proceedings of EpiRob’08—International Conference on Epigenetic Robotics, Brighton, UK, pp. 103–110 (2008). Lund University Cognitive Studies

    Google Scholar 

  25. Quinton, J.-C., Girau, B.: A sparse implementation of dynamic competition in continuous neural fields. In: Brain Inspired Cognitive Systems (BICS’2010), Madrid, 2010

    Google Scholar 

  26. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5(11), 583–601 (1965)

    Article  PubMed  CAS  Google Scholar 

  27. Rougier, N., Boniface, Y.: Dynamic self-organising map. Neurocomputing 74(11), 1840–1847 (2010)

    Article  Google Scholar 

  28. Rougier, N.P., Vitay, J.: Emergence of attention within a neural population. Neural Netw. 19(5), 573–581 (2006). doi:10.1016/j.neunet.2005.04.004

    Article  PubMed  Google Scholar 

  29. Taylor, J.G.: Neural bubble dynamics in two dimensions: Foundations. Biol. Cybern. 80, 5167–5174 (1999)

    Article  Google Scholar 

  30. Tewarson, R.P.: Sparse Matrices. Academic Press, San Diego (1973)

    Google Scholar 

  31. Torres-Huitzil, C., Girau, B., Castellanos Sánchez, C.: On-chip visual perception of motion: a bio-inspired connectionist model on FPGA. Neural Netw. 18, 557–565 (2005)

    Article  PubMed  Google Scholar 

  32. Wennekers, T.: Separation of spatio-temporal receptive fields into sums of Gaussian components. J. Comput. Neurosci. 16(1), 27–38 (2004)

    Article  PubMed  Google Scholar 

  33. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetic 13, 55–80 (1973)

    Article  CAS  Google Scholar 

  34. Xu, W., Duchateau, J., Demuynck, K., Dologlou, I.: A new approach to merging Gaussian densities in large vocabulary continuous speech recognition. In: IEEE Benelux Signal Processing Symposium, pp. 231–234 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Quinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Quinton, JC., Girau, B., Lefort, M. (2011). Competition in High Dimensional Spaces Using a Sparse Approximation of Neural Fields. In: Hernández, C., et al. From Brains to Systems. Advances in Experimental Medicine and Biology, vol 718. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0164-3_11

Download citation

Publish with us

Policies and ethics