Advertisement

Kernel-Learning-Based Face Recognition for Smart Environment

  • Jun-Bao Li
  • Shu-Chuan Chu
  • Jeng-Shyang Pan
Chapter

Abstract

Multimedia multisensor system is used in various monitoring systems such as bus, home, shopping mall, school, and so on. Accordingly, these systems are implemented in an ambient space. Multiple sensors such as audio and video are used for identification and ensure the safety. The wrist pulse signal detector is used to health analysis. These multisensor multimedia systems are be recording, processing, and analyzing the sensory media streams and providing the high-level information.

Keywords

Kernel Principal Component Analysis Fingerprint Image Locality Preserve Projection Smart Environment Locality Preserve Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181–201CrossRefGoogle Scholar
  2. 2.
    Li J-B, Chu S-C, Pan J-S, Ho J-H (2007) Adaptive data-dependent matrix norm based Gaussian kernel for facial feature extraction. Int J Innovative Comput, Inf Control 3(5):1263–1272Google Scholar
  3. 3.
    Sahbi H (2007) Kernel PCA for similarity invariant shape recognition. Neurocomputing 70:3034–3045CrossRefGoogle Scholar
  4. 4.
    Mika S, Ratsch G, Weston J, Schölkopf B, Muller K-R (1999) Fisher discriminant analysis with kernels. In: Proceedings of IEEE international workshop neural networks for signal processing IX, pp 41–48Google Scholar
  5. 5.
    Tao D, Tang X, Li X, Wu X (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell 28(7):1088–1099CrossRefGoogle Scholar
  6. 6.
    Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117–226CrossRefGoogle Scholar
  7. 7.
    Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRefGoogle Scholar
  8. 8.
    Liang Z, Shi P (2005) Uncorrelated discriminant vectors using a kernel method. Pattern Recogn 38:307–310CrossRefMATHGoogle Scholar
  9. 9.
    Liang Z, Shi P (2004) Efficient algorithm for kernel discriminant anlaysis. Pattern Recogn 37(2):381–384CrossRefGoogle Scholar
  10. 10.
    Liang Z, Shi P (2004) An efficient and effective method to solve kernel Fisher discriminant analysis. Neurocomputing 61:485–493CrossRefGoogle Scholar
  11. 11.
    Yang MH (2002) Kernel eigenfaces versus kernel fisherfaces: face recognition using kernel methods. In: Proceedings of fifth ieee international conference automatic face and gesture recognition, pp 215–220Google Scholar
  12. 12.
    Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117–126CrossRefGoogle Scholar
  13. 13.
    Zheng W, Zou C, Zhao L (2005) Weighted maximum margin discriminant analysis with kernels. Neurocomputing 67:357–362CrossRefGoogle Scholar
  14. 14.
    Huang J, Yuen PC, Chen W-S, Lai JH (2004) Kernel subspace LDA with optimized kernel parameters on face recognition. In: Proceedings of the sixth IEEE international conference on automatic face and gesture recognitionGoogle Scholar
  15. 15.
    Wang L, Chan KL, Xue P (2005) A criterion for optimizing kernel parameters in KBDA for image retrieval. IEEE Trans Syst, Man and Cybern-Part B: Cybern 35(3):556–562CrossRefGoogle Scholar
  16. 16.
    Chen W-S, Yuen PC, Huang J, Dai D-Q (2005) Kernel machine-based one-parameter regularized fisher discriminant method for face recognition. IEEE Trans Syst, Man and Cybern-Part B: Cybern 35(4):658–669Google Scholar
  17. 17.
    Liang Y, Li C, Gong W, Pan Y (2007) Uncorrelated linear discriminant analysis based on weighted pairwise Fisher criterion. Pattern Recogn 40:3606–3615CrossRefMATHGoogle Scholar
  18. 18.
    Zheng Y-J, Yang J, Yang J-Y, Wu X-J (2006) A reformative kernel Fisher discriminant algorithm and its application to face recognition. Neurocomputing 69(13-15):1806–1810CrossRefGoogle Scholar
  19. 19.
    Tao D, Tang X, Li X, Rui Y (2006) Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm. IEEE Trans Multimedia 8(4):716–727CrossRefGoogle Scholar
  20. 20.
    Xu Y, Zhang D, Jin Z, Li M, Yang J-Y (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recogn 39(6):1026–1033CrossRefMATHGoogle Scholar
  21. 21.
    Saadi K, Talbot NLC, Cawley C (2007) Optimally regularised kernel Fisher discriminant classification. Neural Netw 20(7):832–841CrossRefMATHGoogle Scholar
  22. 22.
    Yeung D-Y, Chang H, Dai G (2007) Learning the kernel matrix by maximizing a KFD-based class separability criterion. Pattern Recogn 40(7):2021–2028CrossRefMATHGoogle Scholar
  23. 23.
    Shen LL, Bai L, Fairhurst M (2007) Gabor wavelets and general discriminant analysis for face identification and verification. Image Vis Comput 25(5):553–563CrossRefGoogle Scholar
  24. 24.
    Ma B, Qu H-Y, Wong H-S (2007) Kernel clustering-based discriminant analysis. Pattern Recogn 40(1):324–327CrossRefMATHGoogle Scholar
  25. 25.
    Wu X-H, Zhou J-J (2006) Fuzzy discriminant analysis with kernel methods. Pattern Recogn 39(11):2236–2239CrossRefMATHGoogle Scholar
  26. 26.
    Liu Q, Lu H, Ma S (2004) Improving kernel Fisher discriminant analysis for face recognition. IEEE Trans Pattern Analysis Mach Intell 14(1):42–49Google Scholar
  27. 27.
    Shu J, Sun Y (2007) Developing classification indices for Chinese pulse diagnosis. Complement Ther Med 15 (3):190–198Google Scholar
  28. 28.
    Leonard P, Beattie T, Addison P, Watson J (2004) Wavelet analysis of pulse oximeter waveform permits identification of unwell children. Emerg Med J 21:59–60CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Wang Y, Wang W, Yu J (2002) Wavelet feature extraction and classification of Doppler ultrasound blood flow signals. J Biomed Eng 19(2):244–246Google Scholar
  30. 30.
    Lu W, Wang Y, Wang W (1999) Pulse analysis of patients with severe liver problems. IEEE Eng Med Biol Mag 18 (1):73–75Google Scholar
  31. 31.
    Zhang A, Yang F (2005) Study on recognition of sub-health from pulse signal. In: Proceedings of the ICNNB conference, 3:1516–1518Google Scholar
  32. 32.
    Zhang D, Zhang L, Zhang D, Zheng Y (2008) Wavelet-based analysis of Doppler ultrasonic wrist-pulse signals. In: Proceedings of the ICBBE conference, Shanghai 2:539–543Google Scholar
  33. 33.
    Chen Y, Zhang L, Zhang D, Zhang D (2009) Wrist pulse signal diagnosis using modified Gaussian models and fuzzy C-means classification. Med Eng Phys 31:1283–1289CrossRefGoogle Scholar
  34. 34.
    Chen Y, Zhang L, Zhang D, Zhang D (2011) Computerized wrist pulse signal diagnosis using modified auto-regressive models. J Med Syst 35:321–328CrossRefGoogle Scholar
  35. 35.
    Chen B, Wang X, Yang S, McGreavy C (1999) Application of wavelets and neural networks to diagnostic system development, 1, feature extraction. Comput Chem Eng 23:899–906CrossRefGoogle Scholar
  36. 36.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Analysis Mach Intell 19(7):711–720CrossRefGoogle Scholar
  37. 37.
    Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE workshop on applications of computer vision, pp 138–142Google Scholar
  38. 38.
    Wang Y,WuX, Liu B, Yi Y (1997) Definition and application of indices in Doppler ultrasound sonogram. J Biomed Eng Shanghai, 18:26–29Google Scholar
  39. 39.
    Ruano M, Fish P (1993) Cost/benefit criterion for selection of pulsed Doppler ultrasound spectral mean frequency and bandwidth estimators. IEEE Trans BME 40:1338–1341CrossRefGoogle Scholar
  40. 40.
    Lu W, Wang Y, Wang W (1999) Pulse analysis of patients with severe liver problems. IEEE Eng Med Biol Mag 18(Jan/Feb (1)): 73–75Google Scholar
  41. 41.
    Leonard P, Beattie TF, Addison PS, Watson JN (2004) Wavelet analysis of pulse oximeter waveform permits identification of unwell children. J Emerg Med 21:59–60CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Wang Y, Wang W, Yu J (2002) Wavelet feature extraction and classification of Doppler ultrasound blood flow signals. J Biomed Eng 19(2):244–246Google Scholar
  43. 43.
    Zhang D, Zhang L, Zhang D, Zheng Y (2008) Wavelet based analysis of Doppler ultrasonic wrist-pulse signals. In: Proceedings of the ICBBE 2008 conference, vol. 2, pp 539–543Google Scholar
  44. 44.
    Hera1 A, Hou Z (2004) Application of wavelet approach for ASCE structural health monitoring benchmark studies. J Eng Mech, 1:96–104Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Automatic Test and ControlHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Information and EngineeringFlinders University of South AustraliaBedford ParkAustralia
  3. 3.HIT Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenPeople’s Republic of China

Personalised recommendations