Skip to main content

Therapy of Nonexudative Age-Related Macular Degeneration

  • Chapter
  • First Online:
Age-related Macular Degeneration Diagnosis and Treatment

Abstract

Age related macular degeneration (AMD) is the leading cause of blindness among adults over the age of 65 in the Western world. The prevalence of AMD is expected to increase dramatically, from 1.75 million in 2000 to 2.95 million in 2020, due to the rapidly aging population. Given the large and now increasing burden of disease, the identification of modifiable risk factors and new avenues for preventive treatment has become increasingly important. The pathogenesis of macular degeneration is multi-factorial with genetic, environmental, and physiologic components. The retina is uniquely susceptible to oxidative damage, given its high metabolic activity and daily exposure to light. In addition, the presence of large numbers of lipids with double bonds makes it an ideal target for reactive oxygen species. The increasing incidence of macular degeneration with advancing age may be related to gradual dysfunction and degeneration of retinal tissues as oxidative damage accumulates. This cumulative damage may result in physiologic dysfunction, in addition to impaired auto-regulation with restricted exchange and processing of nutrients and metabolic byproducts with progressive disease. Nutrients which may modulate this oxidative damage include lutein, zeaxanthin, beta-carotene, C, E, and B vitamins, and zinc. A growing body of scientific evidence also implicates inflammatory processes in the pathogenesis and progression of macular degeneration. Clinical evidence suggests a role for a combination of antioxidants in reducing progression of AMD and a potential role for omega-3 fatty acids and macular xanthophylls in the prevention and treatment of macular degeneration. The Age Related Eye Disease Study 2 (AREDS2) will further examine the role of these micronutrients in the treatment of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439–52.

    Google Scholar 

  2. Friedman DS, O’Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  PubMed  Google Scholar 

  3. Coleman H, Chew E. Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol. 2007;18(3):220–3.

    Article  PubMed  Google Scholar 

  4. Evans JR. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2006(2):CD000254.

    Google Scholar 

  5. Evans JR, Henshaw K. Antioxidant vitamin and mineral supplementation for preventing age-related macular degeneration. Cochrane Database Syst Rev. 2000(2):CD000253.

    Google Scholar 

  6. Evans JR, Henshaw K. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev. 2008(1):CD000253.

    Google Scholar 

  7. Johnson EJ. Age-related macular degeneration and antioxidant vitamins: recent findings. Curr Opin Clin Nutr Metab Care. 2010;13(1):28–33.

    Article  PubMed  Google Scholar 

  8. Ding X, Patel M, Chan CC. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  9. Bressler NM, Bressler SB, Congdon NG, et al. Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11. Arch Ophthalmol. 2003;121(11):1621–4.

    Article  PubMed  Google Scholar 

  10. Borger PH, van Leeuwen R, Hulsman CA, et al. Is there a direct association between age-related eye ­diseases and mortality? The Rotterdam Study. Ophthalmology. 2003;110(7):1292–6.

    Article  PubMed  Google Scholar 

  11. Clemons TE, Kurinij N, Sperduto RD. Associations of mortality with ocular disorders and an intervention of high-dose antioxidants and zinc in the Age-Related Eye Disease Study: AREDS Report No. 13. Arch Ophthalmol. 2004;122(5):716–26.

    Article  PubMed  CAS  Google Scholar 

  12. Chew EY, Clemons T. Vitamin E and the age-related eye disease study supplementation for age-related macular degeneration. Arch Ophthalmol. 2005;123(3):395–6.

    Article  PubMed  Google Scholar 

  13. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–36.

    Google Scholar 

  14. Nebeling LC, Forman MR, Graubard BI, Snyder RA. Changes in carotenoid intake in the United States: the 1987 and 1992 National Health Interview Surveys. J Am Diet Assoc. 1997;97(9):991–6.

    Article  PubMed  CAS  Google Scholar 

  15. Nebeling LC, Forman MR, Graubard BI, Snyder RA. The impact of lifestyle characteristics on carotenoid intake in the United States: the 1987 National Health Interview Survey. Am J Public Health. 1997;87(2):268–71.

    Article  PubMed  CAS  Google Scholar 

  16. Sommerburg O, Keunen JE, Bird AC, van Kuijk FJ. Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol. 1998;82(8):907–10.

    Article  PubMed  CAS  Google Scholar 

  17. Teikari JM, Laatikainen L, Virtamo J, et al. Six-year supplementation with alpha-tocopherol and beta-carotene and age-related maculopathy. Acta Ophthalmol Scand. 1998;76(2):224–9.

    Article  PubMed  CAS  Google Scholar 

  18. Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115(2):334–41.

    Article  PubMed  Google Scholar 

  19. van Leeuwen R, Boekhoorn S, Vingerling JR, et al. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA. 2005;294(24):3101–7.

    Article  PubMed  Google Scholar 

  20. Chiu CJ, Milton RC, Klein R, Gensler G, Taylor A. Dietary compound score and risk of age-related macular degeneration in the age-related eye disease study. Ophthalmology. 2009;116(5):939–46.

    Article  PubMed  Google Scholar 

  21. Christen WG, Manson JE, Glynn RJ, et al. Beta carotene supplementation and age-related maculopathy in a randomized trial of US physicians. Arch Ophthalmol. 2007;125(3):333–9.

    Article  PubMed  CAS  Google Scholar 

  22. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. Apr 14 1994;330(15):1029–35.

    Google Scholar 

  23. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334(18):1150–5.

    Article  PubMed  CAS  Google Scholar 

  24. Hennekens CH, Buring JE, Manson JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334(18):1145–9.

    Article  PubMed  CAS  Google Scholar 

  25. AREDS2 Manual of Procedures http://www.areds2.org. Accessed on 01/05/2010.

  26. Loane E, Kelliher C, Beatty S, Nolan JM. The rationale and evidence base for a protective role of macular pigment in age-related maculopathy. Br J Ophthalmol. 2008;92(9):1163–8.

    Article  PubMed  CAS  Google Scholar 

  27. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25(6):674–85.

    PubMed  CAS  Google Scholar 

  28. Snodderly DM, Brown PK, Delori FC, Auran JD. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci. 1984;25(6):660–73.

    PubMed  CAS  Google Scholar 

  29. Nolan JM, Stack J, OD O, Loane E, Beatty S. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res. 2007;84(1):61–74.

    Article  PubMed  CAS  Google Scholar 

  30. Trieschmann M, Beatty S, Nolan JM, et al. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study. Exp Eye Res. 2007;84(4):718–28.

    Article  PubMed  CAS  Google Scholar 

  31. Schalch W, Cohn W, Barker FM, et al. Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin – the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Arch Biochem Biophys. 2007;458(2):128–35.

    Article  PubMed  CAS  Google Scholar 

  32. Rosenthal JM, Kim J, de Monasterio F, et al. Dose-ranging study of lutein supplementation in persons aged 60 years or older. Invest Ophthalmol Vis Sci. 2006;47(12):5227–33.

    Article  PubMed  Google Scholar 

  33. SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007;125(9):1225–32.

    Article  PubMed  CAS  Google Scholar 

  34. Tan JS, Wang JJ, Flood V, Mitchell P. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study. Arch Ophthalmol. 2009;127(5):656–65.

    Article  PubMed  CAS  Google Scholar 

  35. Cho E, Hankinson SE, Rosner B, Willett WC, Colditz GA. Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration. Am J Clin Nutr. 2008;87(6):1837–43.

    PubMed  CAS  Google Scholar 

  36. Moeller SM, Parekh N, Tinker L, et al. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Ophthalmol. 2006;124(8):1151–62.

    Article  PubMed  CAS  Google Scholar 

  37. Delcourt C, Carriere I, Delage M, Barberger-Gateau P, Schalch W. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci. 2006;47(6):2329–35.

    Article  PubMed  Google Scholar 

  38. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA. 1994;272(18):1413–20.

    Article  PubMed  CAS  Google Scholar 

  39. Trumbo PR, Ellwood KC. Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr. 2006;84(5):971–4.

    PubMed  CAS  Google Scholar 

  40. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res. 2005;24(1):87–138.

    Article  PubMed  CAS  Google Scholar 

  41. Bannenberg G, Arita M, Serhan CN. Endogenous receptor agonists: resolving inflammation. Sci World J. 2007;7:1440–62.

    CAS  Google Scholar 

  42. Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29(5):263–71.

    Article  PubMed  CAS  Google Scholar 

  43. Bazan NG. Neurotrophins induce neuroprotective ­signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1. Adv Exp Med Biol. 2008;613:39–44.

    Article  PubMed  CAS  Google Scholar 

  44. Serhan CN. Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost. 2009;7 Suppl 1:44–8.

    Article  PubMed  CAS  Google Scholar 

  45. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.

    Article  PubMed  CAS  Google Scholar 

  46. Weylandt KH, Kang JX. Rethinking lipid mediators. Lancet. 2005;366(9486):618–20.

    Article  PubMed  Google Scholar 

  47. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101(22):8491–6.

    Article  PubMed  CAS  Google Scholar 

  48. Sangiovanni JP, Agron E, Meleth AD, et al. {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J Clin Nutr. 2009;90(6):1601–7.

    Article  PubMed  CAS  Google Scholar 

  49. Augood C, Chakravarthy U, Young I, et al. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr. 2008;88(2):398–406.

    PubMed  CAS  Google Scholar 

  50. Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol. 2008;126(6):826–33.

    Article  PubMed  Google Scholar 

  51. Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol. 2006;124(7):995–1001.

    Article  PubMed  CAS  Google Scholar 

  52. Huang LL, Coleman HR, Kim J, et al. Oral supplementation of lutein/zeaxanthin and omega-3 long chain polyunsaturated fatty acids in persons aged 60 years or older, with or without AMD. Invest Ophthalmol Vis Sci. 2008;49(9):3864–9.

    Article  PubMed  Google Scholar 

  53. Chiu CJ, Klein R, Milton RC, Gensler G, Taylor A. Does eating particular diets alter the risk of age-related macular degeneration in users of the Age-Related Eye Disease Study supplements? Br J Ophthalmol. 2009;93(9):1241–6.

    Article  PubMed  Google Scholar 

  54. SanGiovanni JP, Agron E, Clemons TE, Chew EY. Omega-3 long-chain polyunsaturated fatty acid intake inversely associated with 12-year progression to advanced age-related macular degeneration. Arch Ophthalmol. 2009;127(1):110–2.

    Article  PubMed  Google Scholar 

  55. SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch Ophthalmol. 2007;125(5):671–9.

    Article  PubMed  CAS  Google Scholar 

  56. Chong EW, Robman LD, Simpson JA, et al. Fat consumption and its association with age-related macular degeneration. Arch Ophthalmol. 2009;127(5):674–80.

    Article  PubMed  CAS  Google Scholar 

  57. Heuberger RA, Mares-Perlman JA, Klein R, Klein BE, Millen AE, Palta M. Relationship of dietary fat to age-related maculopathy in the Third National Health and Nutrition Examination Survey. Arch Ophthalmol. 2001;119(12):1833–8.

    PubMed  CAS  Google Scholar 

  58. Katz ML, Robison Jr WG. Light and aging effects on vitamin E in the retina and retinal pigment epithelium. Vis Res. 1987;27(11):1875–9.

    Article  PubMed  CAS  Google Scholar 

  59. Supplements OoD. Vitamin E. http://dietary-supplements.info.nih.gov/factsheets/. Accessed on 01/05/2010.

  60. Taylor HR, Tikellis G, Robman LD, McCarty CA, McNeil JJ. Vitamin E supplementation and macular degeneration: randomised controlled trial. BMJ. 2002;325(7354):11.

    Article  PubMed  CAS  Google Scholar 

  61. Christen WG, Ajani UA, Glynn RJ, et al. Prospective cohort study of antioxidant vitamin supplement use and the risk of age-related maculopathy. Am J Epidemiol. 1999;149(5):476–84.

    PubMed  CAS  Google Scholar 

  62. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297(8):842–57.

    Article  PubMed  CAS  Google Scholar 

  63. Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Muller glial cells (TR-MUL). Neurochem Int. 2008;52(7):1351–7.

    Article  PubMed  CAS  Google Scholar 

  64. Supplements OoD. Vitamin C. http://dietary-­supplements.info.nih.gov/factsheets/. Accessed on 01/05/2010.

  65. Friedman PA, Zeidel ML. Victory at C. Nat Med. 1999;5(6):620–1.

    Article  PubMed  CAS  Google Scholar 

  66. Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res. 1995;14(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  67. Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z. Zinc and the eye. J Am Coll Nutr. 2001;20(2 Suppl):106–18.

    PubMed  CAS  Google Scholar 

  68. Supplements OoD. Zinc. http://dietary-supplements.info.nih.gov/factsheets/. Accessed on 01/05/2010.

  69. Wills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ. Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res. 2008;87(2):80–8.

    Article  PubMed  CAS  Google Scholar 

  70. Karcioglu ZA. Zinc in the eye. Surv Ophthalmol. 1982;27(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  71. Cunningham-Rundles S, Cunningham-Rundles C, Dupont B, Good RA. Zinc-induced activation of human B lymphocytes. Clin Immunol Immunopathol. 1980;16(1):115–22.

    Article  PubMed  CAS  Google Scholar 

  72. Hurley LS, Swenerton H. Congenital malformations resulting from zinc deficiency in rats. Proc Soc Exp Biol Med. 1966;123(3):692–6.

    PubMed  CAS  Google Scholar 

  73. Morrison SA, Russell RM, Carney EA, Oaks EV. Zinc deficiency: a cause of abnormal dark adaptation in cirrhotics. Am J Clin Nutr. 1978;31(2):276–81.

    PubMed  CAS  Google Scholar 

  74. Prasad AS. Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr. 1991;53(2):403–12.

    PubMed  CAS  Google Scholar 

  75. Tate DJ, Miceli MV, Newsome DA, Alcock NW, Oliver PD. Influence of zinc on selected cellular functions of cultured human retinal pigment epithelium. Curr Eye Res. 1995;14(10):897–903.

    Article  PubMed  CAS  Google Scholar 

  76. Olin KL, Golub MS, Gershwin ME, Hendrickx AG, Lonnerdal B, Keen CL. Extracellular superoxide dismutase activity is affected by dietary zinc intake in nonhuman primate and rodent models. Am J Clin Nutr. 1995;61(6):1263–7.

    PubMed  CAS  Google Scholar 

  77. Newsome DA, Swartz M, Leone NC, Elston RC, Miller E. Oral zinc in macular degeneration. Arch Ophthalmol. 1988;106(2):192–8.

    PubMed  CAS  Google Scholar 

  78. Newsome DA. A randomized, prospective, placebo-controlled clinical trial of a novel zinc-monocysteine compound in age-related macular degeneration. Curr Eye Res. 2008;33(7):591–8.

    Article  PubMed  CAS  Google Scholar 

  79. VandenLangenberg GM, Mares-Perlman JA, Klein R, Klein BE, Brady WE, Palta M. Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol. 1998;148(2):204–14.

    PubMed  CAS  Google Scholar 

  80. Stur M, Tittl M, Reitner A, Meisinger V. Oral zinc and the second eye in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1996;37(7):1225–35.

    PubMed  CAS  Google Scholar 

  81. Age-Related Eye Disease Study Research Group. The effect of five-year zinc supplementation on serum zinc, serum cholesterol and hematocrit in persons randomly assigned to treatment group in the age-related eye disease study: AREDS Report No. 7. J Nutr. 2002;132(4):697–702.

    Google Scholar 

  82. Klein ML, Francis PJ, Rosner B, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology. 2008;115(6):1019–25.

    Article  PubMed  Google Scholar 

  83. Rochtchina E, Wang JJ, Flood VM, Mitchell P. Elevated serum homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: the Blue Mountains Eye Study. Am J Ophthalmol. 2007;143(2):344–6.

    Article  PubMed  CAS  Google Scholar 

  84. Supplements OoD. Folate/B12. http://dietary-­supplements.info.nih.gov/factsheets/. Accessed on 01/05/2010.

  85. Axer-Siegel R, Bourla D, Ehrlich R, et al. Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol. 2004;137(1):84–9.

    Article  PubMed  Google Scholar 

  86. Heuberger RA, Fisher AI, Jacques PF, et al. Relation of blood homocysteine and its nutritional determinants to age-related maculopathy in the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 2002;76(4):897–902.

    PubMed  CAS  Google Scholar 

  87. Nowak M, Swietochowska E, Wielkoszynski T, et al. Homocysteine, vitamin B12, and folic acid in age-related macular degeneration. Eur J Ophthalmol. 2005;15(6):764–7.

    PubMed  CAS  Google Scholar 

  88. Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol. 1999;34(7):2002–6.

    Article  PubMed  CAS  Google Scholar 

  89. Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB. Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res. 2001;73(1):45–57.

    Article  PubMed  CAS  Google Scholar 

  90. van Leeuwen R, Ikram MK, Vingerling JR, Witteman JC, Hofman A, de Jong PT. Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci. 2003;44(9):3771–7.

    Article  PubMed  Google Scholar 

  91. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35(6):2857–64.

    PubMed  CAS  Google Scholar 

  92. Vingerling JR, Dielemans I, Bots ML, Hofman A, Grobbee DE, de Jong PT. Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidemiol. 1995;142(4):404–9.

    PubMed  CAS  Google Scholar 

  93. Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the Women’s Antioxidant and Folic Acid Cardiovascular Study. Arch Intern Med. 2009;169(4):335–41.

    Article  PubMed  CAS  Google Scholar 

  94. Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004;3:4.

    Article  PubMed  Google Scholar 

  95. Age-Related Eye Disease Study Research Group. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr. 2005;82(4):806–12.

    Google Scholar 

  96. Doshi SN, McDowell IF, Moat SJ, et al. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation. 2002;105(1):22–6.

    Article  PubMed  CAS  Google Scholar 

  97. Moat SJ, Lang D, McDowell IF, et al. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem. 2004;15(2):64–79.

    Article  PubMed  CAS  Google Scholar 

  98. Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ. 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation. 1998;97(3):237–41.

    PubMed  CAS  Google Scholar 

  99. Chew E. Age-related Eye Disease Study 2 Protocol. https://web.emmes.com/study/areds2/resources/areds2_protocol.pdf. Accessed on 01/05/2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annal D. Meleth M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meleth, A.D., Raiji, V.R., Krishnadev, N., Chew, E.Y. (2011). Therapy of Nonexudative Age-Related Macular Degeneration. In: Ho, A., Regillo, C. (eds) Age-related Macular Degeneration Diagnosis and Treatment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0125-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0125-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0124-7

  • Online ISBN: 978-1-4614-0125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics