Advertisement

Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs, and Planar Graphs in a Small Area

  • Giuseppe Di Battista
  • Fabrizio Frati
Chapter

Abstract

In this chapter, we survey algorithms and bounds for constructing planar drawings of graphs in a small area.

Keywords

Planar Graph Outer Face Outerplanar Graph Planar Embedding Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is partially supported by the Italian Ministry of Research, Projects AlgoDEEP no. 2008TFBWL4 and FIRB “Advanced tracking system in intermodal freight transportation,” no. RBIP06BZW8; by the Swiss National Science Foundation, Grant no. 200021-125287/1; and by the Centre Interfacultaire Bernoulli (CIB) of EPFL.

References

  1. 1.
    G.E. Andrews, A lower bound for the volumes of strictly convex bodies with many boundary points. Trans. Am. Math. Soc. 106, 270–279 (1963)MATHCrossRefGoogle Scholar
  2. 2.
    P. Angelini, G. Di Battista, F. Frati, Succinct greedy drawings do not always exist, in Graph Drawing (GD’09), ed. by D. Eppstein, E.R. Gansner. LNCS, Springer, vol. 5849 (2010) pp. 171–182Google Scholar
  3. 3.
    P. Angelini, T. Bruckdorfer, M. Chiesa, F. Frati, M. Kaufmann, C. Squarcella, On the area requirements of Euclidean minimum spanning trees (2011), manuscriptGoogle Scholar
  4. 4.
    P. Angelini, F. Frati, L. Grilli, An algorithm to construct greedy drawings of triangulations. J. Graph Algorithm. Appl. 14(1), 19–51 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    P. Angelini, F. Frati, M. Kaufmann, Straight-line rectangular drawings of clustered graphs. Discr. Comput. Geom. 45(1), 88–140 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    P. Angelini, F. Frati, M. Patrignani, Splitting clusters to get c-planarity, in Graph Drawing (GD’09), ed. by D. Eppstein, E.R. Gansner. LNCS, Springer, vol. 5849 (2010), pp. 57–68Google Scholar
  7. 7.
    I. Bárány, J. Pach, On the number of convex lattice polygons. Comb. Prob. Comput. 1, 295–302 (1992)MATHCrossRefGoogle Scholar
  8. 8.
    I. Bárány, G. Rote, Strictly convex drawings of planar graphs. Doc. Math. 11, 369–391 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    I. Bárány, N. Tokushige, The minimum area of convex lattice n-gons. Combinatorica 24(2), 171–185 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, I.G. Tollis, How to draw a series-parallel digraph. Int. J. Comput. Geom. Appl. 4(4), 385–402 (1994)MATHCrossRefGoogle Scholar
  11. 11.
    P. Bertolazzi, G. Di Battista, G. Liotta, C. Mannino, Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    T.C. Biedl, Drawing outer-planar graphs in O(nlogn) area, in Graph Drawing (GD’02), ed. by M.T. Goodrich. LNCS, Springer, vol. 2528 (2002), pp. 54–65Google Scholar
  13. 13.
    T.C. Biedl, Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discr. Comput. Geom. 45(1), 141–160 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    T.C. Biedl, F.J. Brandenburg, Drawing planar bipartite graphs with small area, in Canadian Conference on Computational Geometry (CCCG’05), University of Windsor, Ontario, Canada, 2005, pp. 105–108Google Scholar
  15. 15.
    T.C. Biedl, T.M. Chan, A. López-Ortiz, Drawing K 2, n: a lower bound. Inform. Process. Lett. 85(6), 303–305 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    T.C. Biedl, G. Kant, M. Kaufmann, On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    N. Bonichon, S. Felsner, M. Mosbah, Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    N. Bonichon, B. Le Saëc, M. Mosbah, Wagner’s theorem on realizers, in Automata, Languages and Programming (ICALP’02), ed. by P. Widmayer, F. Triguero Ruiz, R.M. Bueno, M. Hennessy, S. Eidenbenz, R. Conejo. LNCS, Springer, vol. 2380 (2002), pp. 1043–1053Google Scholar
  19. 19.
    P. Bose, W. Lenhart, G. Liotta, Characterizing proximity trees. Algorithmica 16(1), 83–110 (1996)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    F.J. Brandenburg, Drawing planar graphs on \(\frac{8} {9}{n}^{2}\) area. Electron. Notes Discr. Math. 31, 37–40 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Brocot, Calcul des rouages par approximation, nouvelle methode. Rev. Chronom. 6, 186–194 (1860)Google Scholar
  22. 22.
    L. Cao, A. Strelzoff, J.Z. Sun, On succinctness of geometric greedy routing in Euclidean plane, in Pervasive Systems, Algorithms, and Networks (ISPAN’09), Kaohsiung, Taiwan, 2009, pp. 326–331Google Scholar
  23. 23.
    T.M. Chan, M.T. Goodrich, S. Rao Kosaraju, R. Tamassia, Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom.: Theor. Appl. 23(2), 153–162 (2002)Google Scholar
  24. 24.
    T.M. Chan, A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13 (2002)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    C.C. Cheng, C.A. Duncan, M.T. Goodrich, S.G. Kobourov, Drawing planar graphs with circular arcs. Discr. Comput. Geom. 25(3), 405–418 (2001)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    N. Chiba, T. Yamanouchi, T. Nishizeki, Linear algorithms for convex drawings of planar graphs, in Progress in Graph Theory, ed. by J.A. Bondy, U.S.R. Murty (Academic Press, New York, 1984), pp. 153–173Google Scholar
  27. 27.
    M. Chrobak, M.T. Goodrich, R. Tamassia, Convex drawings of graphs in two and three dimensions (preliminary version), in Symposium on Computational Geometry (SoCG’96), Philadelphia, Pennsylvania, USA, 1996, pp. 319–328Google Scholar
  28. 28.
    M. Chrobak, G. Kant, Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. Limerick, Ireland, 7(3), 211–223 (1997)Google Scholar
  29. 29.
    M. Chrobak, T.H. Payne, A linear-time algorithm for drawing a planar graph on a grid. Inform. Process. Lett. 54(4), 241–246 (1995)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    S. Cornelsen, D. Wagner, Completely connected clustered graphs. J. Discr. Algorithm. 4(2), 313–323 (2006)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    P.F. Cortese, G. Di Battista, F. Frati, M. Patrignani, M. Pizzonia, C-planarity of c-connected clustered graphs. J. Graph Algorithm. Appl. Carleton University, Ottawa, Canada, 12(2), 225–262 (2008)Google Scholar
  32. 32.
    P.F. Cortese, G. Di Battista, M. Patrignani, M. Pizzonia, Clustering cycles into cycles of clusters. J. Graph Algorithm. Appl. 9(3), 391–413 (2005)MATHCrossRefGoogle Scholar
  33. 33.
    P.F. Cortese, G. Di Battista, M. Patrignani, M. Pizzonia, On embedding a cycle in a plane graph. Discr. Math. 309(7), 1856–1869 (2009)MATHCrossRefGoogle Scholar
  34. 34.
    P. Crescenzi, G. Di Battista, A. Piperno, A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom.: Theor. Appl. 2, 187–200 (1992)Google Scholar
  35. 35.
    E. Dahlhaus, A linear time algorithm to recognize clustered graphs and its parallelization, in Latin American Symposium on Theoretical Informatics (LATIN’98), ed. by C.L. Lucchesi, A.V. Moura. LNCS, Springer, vol. 1380 (1998), pp. 239–248Google Scholar
  36. 36.
    H. de Fraysseix, J. Pach, R. Pollack, Small sets supporting Fáry embeddings of planar graphs, in Symposium on Theory of Computing (STOC’88), ed. by J. Simon, Chicago, Illinois, USA, (1988), pp. 426–433Google Scholar
  37. 37.
    H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    R. Dhandapani, Greedy drawings of triangulations. Discr. Comput. Geom. 43(2), 375–392 (2010)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    G. Di Battista, G. Drovandi, F. Frati, How to draw a clustered tree. J. Discr. Algorithm. 7(4), 479–499 (2009)MATHCrossRefGoogle Scholar
  40. 40.
    G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing (Prentice Hall, Upper Saddle River, NJ, 1999)MATHGoogle Scholar
  41. 41.
    G. Di Battista, F. Frati, Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Algorithm. Appl. 13(3), 349–378 (2009)MATHCrossRefGoogle Scholar
  42. 42.
    G. Di Battista, F. Frati, Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    G. Di Battista, W. Lenhart, G. Liotta, Proximity drawability: a survey, in Graph Drawing (GD’94), ed. by R. Tamassia, I.G. Tollis. LNCS, Princeton, New Jersey, USA, vol. 894 (1994), pp. 328–339Google Scholar
  44. 44.
    G. Di Battista, G. Liotta, S. Whitesides, The strength of weak proximity. J. Discr. Algorithm. 4(3), 384–400 (2006)MATHCrossRefGoogle Scholar
  45. 45.
    G. Di Battista, W.P. Liu, I. Rival, Bipartite graphs, upward drawings, and planarity. Inform. Process. Lett. 36(6), 317–322 (1990)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    G. Di Battista, R. Tamassia, Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)MATHCrossRefGoogle Scholar
  47. 47.
    G. Di Battista, R. Tamassia, L. Vismara, Output-sensitive reporting of disjoint paths. Algorithmica 23(4), 302–340 (1999)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    G. Di Battista, R. Tamassia, I.G. Tollis, Area requirement and symmetry display of planar upward drawings. Discr. Comput. Geom. 7, 381–401 (1992)MATHCrossRefGoogle Scholar
  49. 49.
    G. Di Battista, R. Tamassia, L. Vismara, Incremental convex planarity testing. Inform. Comput. 169(1), 94–126 (2001)MATHCrossRefGoogle Scholar
  50. 50.
    W. Didimo, F. Giordano, G. Liotta, Upward spirality and upward planarity testing, in Graph Drawing (GD’05), ed. by P. Healy, N. Nikolov. LNCS, vol. 3843 (2005), pp. 117–128Google Scholar
  51. 51.
    M.B. Dillencourt, Realizability of Delaunay triangulations. Inform. Process. Lett. 33(6), 283–287 (1990)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    M.B. Dillencourt, W.D. Smith, Graph-theoretical conditions for inscribability and Delaunay realizability. Discr. Math. 161(1–3), 63–77 (1996)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    D. Dolev, H.W. Trickey, On linear area embedding of planar graphs. Technical report, Stanford University, Stanford, CA, 1981Google Scholar
  54. 54.
    P. Eades, Q. Feng, X. Lin, H. Nagamochi, Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    P. Eades, Q. Feng, H. Nagamochi, Drawing clustered graphs on an orthogonal grid. J. Graph Algorithm. Appl. 3(4), 3–29 (1999)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    P. Eades, S. Whitesides, The logic engine and the realization problem for nearest neighbor graphs. Theor. Comput. Sci. 169(1), 23–37 (1996)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    P. Eades, S. Whitesides, The realization problem for Euclidean minimum spanning trees in NP-hard. Algorithmica 16(1), 60–82 (1996)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    D. Eppstein, M.T. Goodrich, Succinct greedy graph drawing in the hyperbolic plane, in Graph Drawing (GD’08), ed. by I.G. Tollis, M. Patrignani. LNCS, vol. 5417 (2009), pp. 14–25Google Scholar
  59. 59.
    I. Fáry, On straight line representation of planar graphs. Acta Sci. Math. 11, 229–233 (1948)MATHGoogle Scholar
  60. 60.
    S. Felsner, G. Liotta, S.K. Wismath, Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithm. Appl. 7(4), 363–398 (2003)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Q. Feng, Algorithms for drawing clustered graphs. Ph.D. thesis, The University of Newcastle, Australia, 1997Google Scholar
  62. 62.
    Q. Feng, R.F. Cohen, P. Eades, How to draw a planar clustered graph, in Computing and Combinatorics (COCOON’95), ed. by D. Du, M. Li. LNCS, Xi’an, China, vol. 959 (1995), pp. 21–30Google Scholar
  63. 63.
    Q. Feng, R.F. Cohen, P. Eades, Planarity for clustered graphs, in European Symposium on Algorithms (ESA’95), ed. by P.G. Spirakis. LNCS, Corfu, Greece, vol. 979 (1995), pp. 213–226Google Scholar
  64. 64.
    F. Frati, Straight-line drawings of outerplanar graphs in O(dnlogn) area, in Canadian Conference on Computational Geometry (CCCG’07), Carleton University, Ottawa, Canada 2007, pp. 225–228Google Scholar
  65. 65.
    F. Frati, On minimum area planar upward drawings of directed trees and other families of directed acyclic graphs. Int. J. Comput. Geom. Appl. 18(3), 251–271 (2008)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    F. Frati, Straight-line orthogonal drawings of binary and ternary trees, in Graph Drawing (GD’07), ed. by S.-H. Hong, T. Nishizeki, W. Quan. LNCS, Sydney, Australia, vol. 4875 (2008), pp. 76–87Google Scholar
  67. 67.
    F. Frati, Lower bounds on the area requirements of series-parallel graphs. Discr. Math. Theor. Comput. Sci. 12(5), 139–174 (2010)MathSciNetGoogle Scholar
  68. 68.
    F. Frati, M. Kaufmann, Polynomial area bounds for MST embeddings of trees. Tech. report RT-DIA-122-2008, Dept. of Computer Science and Automation, Roma Tre University, Rome, 2008Google Scholar
  69. 69.
    F. Frati, M. Patrignani, A note on minimum area straight-line drawings of planar graphs, in Graph Drawing (GD’07), ed. by S.H. Hong, T. Nishizeki. LNCS, Sydney, Australia, vol. 4875 (2007), pp. 339–344Google Scholar
  70. 70.
    A. Garg, M.T. Goodrich, R. Tamassia, Planar upward tree drawings with optimal area. Int. J. Comput. Geom. Appl. 6(3), 333–356 (1996)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    A. Garg, A. Rusu, Area-efficient order-preserving planar straight-line drawings of ordered trees. Int. J. Comput. Geom. Appl. 13(6), 487–505 (2003)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    A. Garg, A. Rusu, Straight-line drawings of general trees with linear area and arbitrary aspect ratio, in Computational Science and Its Applications (ICCSA’03), ed. by V. Kumar, M.L. Gavrilova, C.J.K. Tan, P. L’Ecuyer. LNCS, Montreal, Canada, vol. 2669 (2003), pp. 876–885Google Scholar
  73. 73.
    A. Garg, A. Rusu, Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. J. Graph Algorithm. Appl. Rome, Italy, 8(2), 135–160 (2004)Google Scholar
  74. 74.
    A. Garg, A. Rusu, Area-efficient planar straight-line drawings of outerplanar graphs. Discr. Appl. Math. 155(9), 1116–1140 (2007)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    A. Garg, R. Tamassia, Efficient computation of planar straight-line upward drawings, in Graph Drawing (Proc. ALCOM Workshop on Graph Drawing), Sevres, Paris, 1994, pp. 298–306Google Scholar
  76. 76.
    A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    M.T. Goodrich, G.S. Lueker, J.Z. Sun, C-planarity of extrovert clustered graphs, in Graph Drawing (GD’05), ed. by P. Healy, N. Nikolov. LNCS, Limerick, Ireland, vol. 3843 (2005), pp. 211–222Google Scholar
  78. 78.
    M.T. Goodrich, D. Strash, Succinct greedy geometric routing in the Euclidean plane, in Algorithms and Computation (ISAAC’09), ed. by Y. Dong, D.-Z. Du, O.H. Ibarra. LNCS, Hawai, USA, vol. 5878 (2009), pp. 781–791Google Scholar
  79. 79.
    M.T. Goodrich, C.G. Wagner, A framework for drawing planar graphs with curves and polylines. J. Algorithms 37(2), 399–421 (2000)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, R. Weiskircher, Advances in c-planarity testing of clustered graphs, in Graph Drawing (GD’02), ed. by S.G. Kobourov, M.T. Goodrich. LNCS, Irvine, California, USA, vol. 2528 (2002), pp. 220–235Google Scholar
  81. 81.
    C. Gutwenger, P. Mutzel, Planar polyline drawings with good angular resolution, in Graph Drawing (GD’98), ed. by S. Whitesides. LNCS, Montréal, Canada, vol. 1547 (1998), pp. 167–182Google Scholar
  82. 82.
    X. He, Grid embedding of 4-connected plane graphs. Discr. Comput. Geom. 17(3), 339–358 (1997)MATHCrossRefGoogle Scholar
  83. 83.
    X. He, H. Zhang, Succinct convex greedy drawing of 3-connected plane graphs, in Symposium on Discrete Algorithms (SODA’11), San Francisco, California, USA, 2011, pp. 1477–1486Google Scholar
  84. 84.
    M.D. Hutton, A. Lubiw, Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický, Clustered planarity: embedded clustered graphs with two-component clusters, in Graph Drawing (GD’08), ed. by I.G. Tollis, M. Patrignani. LNCS, Heraklion, Crete, Greece, vol. 5417 (2008), pp. 121–132Google Scholar
  86. 86.
    V. Jelínek, O. Suchý, M. Tesař, T. Vyskočil, Clustered planarity: clusters with few outgoing edges, in Graph Drawing (GD’08), ed. by I.G. Tollis, M. Patrignani. LNCS, Heraklion, Crete, Greece, vol. 5417 (2008), pp. 102–113Google Scholar
  87. 87.
    E. Jelínková, J. Kára, J. Kratochvíl, M. Pergel, O. Suchý, T. Vyskočil, Clustered planarity: small clusters in cycles and Eulerian graphs. J. Graph Algorithm Appl. 13(3), 379–422 (2009)MATHCrossRefGoogle Scholar
  88. 88.
    G. Kant, Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    G. Kant, X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    M. Kaufmann, Polynomial area bounds for MST embeddings of trees, in Graph Drawing (GD’07), ed. by S.H. Hong, T. Nishizeki, W. Quan. LNCS, Sydney, Australia, vol. 4875 (2007), pp. 88–100Google Scholar
  91. 91.
    M. Kaufmann, D. Wagner (eds.), Drawing Graphs, Methods and Models. Lecture Notes in Computer Science (Springer-Verlag, New York/Heidelberg, 2001)Google Scholar
  92. 92.
    S.K. Kim, Simple algorithms for orthogonal upward drawings of binary and ternary trees, in Canadian Conference on Computational Geometry (CCCG’95), Quebec City, Quebec, Canada, 1995, pp. 115–120Google Scholar
  93. 93.
    R. Kleinberg, Geographic routing using hyperbolic space, in IEEE Conference on Computer Communications (INFOCOM’07), Anchorage, Alaska, USA, 2007, pp. 1902–1909Google Scholar
  94. 94.
    T. Leighton, A. Moitra, Some results on greedy embeddings in metric spaces. Discr. Comput. Geom. 44(3), 686–705 (2010)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    W. Lenhart, G. Liotta, Proximity drawings of outerplanar graphs, in Graph Drawing (GD’96), ed. by S.C. North. LNCS, Berkeley, California, USA, vol. 1190 (1996), pp. 286–302Google Scholar
  96. 96.
    G. Liotta, Computing proximity drawings of graphs. Ph.D. thesis, University of Rome “La Sapienza.” Rome, 1995Google Scholar
  97. 97.
    G. Liotta, R. Tamassia, I.G. Tollis, P. Vocca, Area requirement of Gabriel drawings, in Algorithms and Complexity (CIAC’97), ed. by G.C. Bongiovanni, D.P. Bovet, G. Di Battista. LNCS, Rome, Italy, vol. 1203 (1997), pp. 135–146Google Scholar
  98. 98.
    A. Lubiw, N. Sleumer, Maximal outerplanar graphs are relative neighborhood graphs, in Canadian Conference on Computational Geometry (CCCG’93), Waterloo, Ontario, Canada, 1993, pp. 198–203Google Scholar
  99. 99.
    K. Miura, S.-I. Nakano, T. Nishizeki, Grid drawings of 4-connected plane graphs. Discr. Comput. Geom. 26(1), 73–87 (2001)MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    D. Mondal, R.I. Nishat, Md. S. Rahman, Md. J. Alam, Minimum-area drawings of plane 3-trees, in Canadian Conference on Computational Geometry (CCCG’10), Manitoba, Canada, 2010, pp. 191–194Google Scholar
  101. 101.
    C.L. Monma, S. Suri, Transitions in geometric minimum spanning trees. Discr. Comput. Geom. 8, 265–293 (1992)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms (North Holland, Amsterdam, 1988)MATHGoogle Scholar
  103. 103.
    C.H. Papadimitriou, D. Ratajczak, On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    A. Papakostas, Upward planarity testing of outerplanar dags, in Graph Drawing, ed. by R. Tamassia, I.G. Tollis. LNCS, Springer, vol. 894 (1994), pp. 298–306Google Scholar
  105. 105.
    P. Penna, P. Vocca, Proximity drawings in polynomial area and volume. Comput. Geom.: Theor. Appl. 29(2), 91–116 (2004)Google Scholar
  106. 106.
    S. Rabinowitz, O(n 3) bounds for the area of a convex lattice n-gon. Geombinatorics 2, 85–88 (1993)MathSciNetMATHGoogle Scholar
  107. 107.
    A. Rao, C.H. Papadimitriou, S. Shenker, I. Stoica, Geographic routing without location information, in ACM International Conference on Mobile Computing and Networking (MOBICOM’03), ed. by D.B. Johnson, A.D. Joseph, N.H. Vaidya, San Diego, California, USA, 2003, pp. 96–108Google Scholar
  108. 108.
    R.C. Read, A new method for drawing a graph given the cyclic order of the edges at each vertex. Congressus Numerantium 56, 31–44 (1987)MathSciNetGoogle Scholar
  109. 109.
    G. Rote, Strictly convex drawings of planar graphs, in Symposium on Discrete Algorithms (SODA’05), Vancouver, BC, Canada, 2005, pp. 728–734Google Scholar
  110. 110.
    W. Schnyder, Embedding planar graphs on the grid, in Symposium on Discrete Algorithms (SODA’90), San Francisco, California, USA, 1990, pp. 138–148Google Scholar
  111. 111.
    W. Schnyder, W. Trotter, Convex drawings of planar graphs. Abstr. Am. Math. Soc. 92T-05-135 (1992)Google Scholar
  112. 112.
    C.S. Shin, S.K. Kim, K.Y. Chwa, Area-efficient algorithms for straight-line tree drawings. Comput. Geom.: Theor. Appl. 15(4), 175–202 (2000)Google Scholar
  113. 113.
    S.K. Stein, Convex maps. Am. Math. Soc. 2, 464–466 (1951)MATHGoogle Scholar
  114. 114.
    M.A. Stern, Ueber eine zahlentheoretische funktion. J. Reine Angew. Math. 55, 193–220 (1858)MATHCrossRefGoogle Scholar
  115. 115.
    R. Tamassia (ed.), Handbook of Graph Drawing and Visualization (CRC Press), to appearGoogle Scholar
  116. 116.
    R. Tamassia, I.G. Tollis, A unified approach to visibility representation of planar graphs. Discr. Comput. Geom. 1, 321–341 (1986)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    C. Thomassen, Planarity and duality of finite and infinite graphs. J. Comb. Theor. Ser. B 29(2), 244–271 (1980)MATHCrossRefGoogle Scholar
  118. 118.
    C. Thomassen, Plane representations of graphs, in Progress in Graph Theory (Academic, 1984), pp. 43–69Google Scholar
  119. 119.
    W.T. Tutte, Convex representations of graphs. Lond. Math. Soc. 10, 304–320 (1960)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    W.T. Tutte, How to draw a graph. Lond. Math. Soc. 13(3), 743–768 (1963)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    L.G. Valiant, Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    K. Wagner, Bemerkungen zum vierfarbenproblem. Jahresbericht. German. Math.-Verein 2, 26–32 (1936)Google Scholar
  123. 123.
    D. Woods, Drawing planar graphs. Ph.D. thesis, Stanford University, Stanford, CA, 1982Google Scholar
  124. 124.
    H. Zhang, Planar polyline drawings via graph transformations. Algorithmica 57(2), 381–397 (2010)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    H. Zhang, S. Sadasivam, On planar polyline drawings, in Graph Drawing, ed. by S.-H. Hong, T. Nishizeki, W. Quan. LNCS, Springer, vol. 4875 (2008), pp. 213–218Google Scholar
  126. 126.
    X. Zhou, T. Hikino, T. Nishizeki, Small grid drawings of planar graphs with balanced bipartition, in Algorithms and Computation (WALCOM’10), ed. by Md. S. Rahman, S. Fujita. LNCS, Dhaka, Bangladesh, vol. 5942 (2010), pp. 47–57Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Informatica e Automazione - Roma Tre UniversityRomeItaly
  2. 2.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations