Skip to main content

Introduction

  • Chapter
  • First Online:
Thirty Essays on Geometric Graph Theory
  • 2353 Accesses

Abstract

In the mathematical literature, the term “geometric graph theory” is often used in a somewhat vague sense: to cover any area of graph theory in which geometric methods seem to be relevant to the study of graphs defined by geometric means. In the present volume, by a geometric graph we mean a graph drawn in the plane so that its vertices are represented by distinct points and its edges by (possibly crossing) straight-line segments between these points such that no edge passes through a vertex different from its endpoints. Topological graphs are defined analogously, except that their edges can be represented by simple Jordan arcs [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Ackerman, On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discr. Comput. Geom. 41, 365–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Ajtai, V. Chvátal, M. Newborn, E. Szemerédi, Crossing-free subgraphs. Ann. Discr. Math. 12, 9–12 (1982)

    MATH  Google Scholar 

  4. N. Alon, P. Erdős, Disjoint edges in geometric graphs. Discr. Comput. Geom. 4, 287–290 (1989)

    Article  MATH  Google Scholar 

  5. S. Avital, H. Hanani, Graphs. Gilyonot Lematematika 3, 2–8 (1966) [in Hebrew]

    Google Scholar 

  6. D. Bienstock, N. Dean, Bounds for rectilinear crossing numbers. J. Graph Theor. 17, 333–348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ch. Chojnacki (A. Hanani), Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)

    Google Scholar 

  8. P. Erdős, R.K. Guy, Crossing number problems. Am. Math. Mon. 80, 52–58 (1973)

    Article  Google Scholar 

  9. I. Fáry, On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)

    MathSciNet  MATH  Google Scholar 

  10. H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Fulek, J. Pach, A computational approach to Conway’s thrackle conjecture. Comput. Geom. 44, 345–355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.K. Guy, The decline and fall of Zarankiewicz’s theorem, in Proof Techniques in Graph Theory (Academic Press, New York, 1969), pp. 63–69

    Google Scholar 

  13. H. Hopf, E. Pannwitz, Aufgabe no. 167. Jahresbericht Deutschen Mathematiker-Vereinigung 43, 114 (1934)

    Google Scholar 

  14. Y. Kupitz, Extremal problems in combinatorial geometry, in Aarhus University Lecture Notes Series, vol. 53 (Aarhus University, Aarhus, 1979)

    Google Scholar 

  15. T. Leighton, in Complexity Issues in VLSI, Foundations of Computing Series (MIT, Cambridge, 1983)

    Google Scholar 

  16. S. Malitz, A. Papakostas, On the angular resolution of planar graphs. SIAM J. Discr. Math. 7, 172–183 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Pach, Geometric graph theory, in Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J.E. Goodman, J. O’Rourke (Chapman & Hall/CRC, Boca Raton, FL, 2004), pp. 219–238 (Chap. 10)

  18. J. Pach (ed.), Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342 (American Mathematical Society, Providence, RI, 2004)

    Google Scholar 

  19. J. Pach, G. Tóth, Which crossing number is it, anyway? J. Comb. Theor. Ser. B 80, 225–246 (2000)

    Article  MATH  Google Scholar 

  20. P. Turán, A note of welcome. J. Graph Theor. 1, 7–9 (1977)

    Article  Google Scholar 

  21. W.T. Tutte, Toward a theory of crossing numbers. J. Comb. Theor. 8, 45–53 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.R. Woodall, Thrackles and deadlock, in Combinatorial Mathematics and Its Applications, ed. by D.J.A. Welsh (Academic Press, London, 1969), pp. 335–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Pach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pach, J. (2013). Introduction. In: Pach, J. (eds) Thirty Essays on Geometric Graph Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0110-0_1

Download citation

Publish with us

Policies and ethics