Skip to main content

The Role of Innate Immunity in Trafficking of Hematopoietic Stem Cells—An Emerging Link Between Activation of Complement Cascade and Chemotactic Gradients of Bioactive Sphingolipids

  • Chapter
  • First Online:
Book cover Current Topics in Innate Immunity II

Abstract

Hematopoietic stem and progenitor cells (HSPCs) circulate under steady-state conditions at detectable levels in peripheral blood (PB). The phenomenon of enforced release of HSPCs from BM into PB is called mobilization and may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical- or infection-induced tissue damage and is a part of stress response. It is unquestionable that the a-chemokine stromal derived factor-1 (SDF-1)—CXCR4 axis plays crucial role in retention of HSPCs in BM. However, all factors that direct mobilization of HSPCs into PB and homing back to the BM or their allocation to damaged organs are not characterized very well. In this chapter we will present mounting evidence that elements of innate immunity such as complement cascade (CC) cleavage fragments (e.g., C3a and C5a), granulocytes, generation of membrane attack complex (MAC) together with sphingosine-1 phosphate (S1P) orchestrate HSPC mobilization. On other hand some other bioactive lipids e.g., ceramide-1-phosphate (C1P) that is released from damaged/“leaky” cells in BM after myeloablative conditioning for transplant may play an opposite important role in homing of HSPCs to BM. Finally, the chemotactic activity of all chemoattractants for HSPCs including SDF-1, S1P and C1P is enhanced in presence of CC cleavage fragments (e.g., C3a) and MAC that is a final product of CC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K. and Nagasawa, T. (2003) Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257–267

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, J. P., and Frank, M.M. (2006) Bypassing complement: evolutionary lessons and future implications. J Clin Invest 116, 1215–1218

    Article  PubMed  CAS  Google Scholar 

  • Avigdor, A., Goichberg, P., Shivtiel, S., Peled, A., Samira, S., Kollet, O., Hershkoviz, R., Alon, R., Hardan, I., Ben-Hur, H., Naor, D., Nagler, A. and Lapidot, T. (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34 stem/progenitor cells to bone marrow. Blood 103, 2981-2989

    Google Scholar 

  • Baron, M.H. (2003) Embryonic origins of mammalian hematopoiesis. Exp Hematol 31, 1160–1169

    Google Scholar 

  • Bonig, H., Priestley, G.V., Oehler, V., and Papayannopoulou, T. (2007) Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 35, 326-34

    Article  PubMed  CAS  Google Scholar 

  • Cecyn, K.Z., Schimieguel, D.M., Kimura, E.Y., Yamamoto, M. and Oliveira, J.S. (2009) Plasma levels of FL and SDF-1 and expression of FLT-3 and CXCR4 on CD34+ cells assessed pre and post hematopoietic stem cell mobilization in patients with hematologic malignancies and in healthy donors. Transfus Apher Sci 40, 159–167

    Article  PubMed  Google Scholar 

  • Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P. and Gurtner, G.C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858-864

    Article  PubMed  CAS  Google Scholar 

  • Christopherson II, K.W., Hangoc, G., Mantel, C.R. and Broxmeyer, H.E. (2004) Modulation of Hematopoietic Stem Cell Homing and Engraftment by CD26. Science 305, 1000-1003

    Article  CAS  Google Scholar 

  • Del Pozo, M.A., Alderson, N.B., Kiosses, W.B., Chiang, H.H., Anderson, R.G. and Schwartz, M.A. (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842

    Article  PubMed  CAS  Google Scholar 

  • Granado, M.H., Gangoiti, P., Ouro, A., Arana, L., González, M., Trueba, M. and Gómez-Muñoz, A. (2009) Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor.Cell Signal. 21,405-12

    Google Scholar 

  • Gu, Y., Filippi, M.D., Cancelas, J.A., Siefring, J.E., Williams, E.P., Jasti, A.C. Harris, C.E., Lee, A.W., Prabhakar, R., Atkinson, S.J., Kwiatkowski, D.J. and Williams, D.A. (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302, 445–449

    Article  PubMed  CAS  Google Scholar 

  • Hanel, P., Andre´ani, P. and Graler, M.H. (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21, 1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Hattori, K., Heissig, B., Tashiro, K., Honjo, T., Tateno, M., Shieh, J.H., Hackett, N.R., Quitoriano, M.S., Crystal, R.G., Rafii, S. and Moore, M.A. (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360

    Article  PubMed  CAS  Google Scholar 

  • Holers, V.M. (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223,300–316

    Article  PubMed  CAS  Google Scholar 

  • Huber-Lang, M., Sarma, J.V., Zetoune, F.S., Rittirsch, D., Neff, T.A., McGuire, S.R., Lambris, J.D., Warner, R.L., Flierl, M.A., Hoesel, L.M., Gebhard, F., Younger, J.G., Drouin, S.M., Wetsel, R.A. and Ward, P.A. (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12, 682–687

    Article  PubMed  CAS  Google Scholar 

  • Janowska-Wieczorek, A., Majka, M., Kijowski, J., Baj-Krzyworzeka, M., Reca, R., Turner, A.R., Ratajczak, J., Emerson, S.G., Kowalska, M.A. and Ratajczak, M.Z. (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98, 3143-3149

    Article  PubMed  CAS  Google Scholar 

  • Jalili, A., Marquez-Curtis, L., Shirvaikar, N., Wysoczynski, M., Ratajczak, M. and Janowska-Wieczorek, A. (2010a) Complement C1q enhances homing-related responses of hematopoietic stem/progenitor cells. Transfusion 50, 2002-10

    Article  CAS  Google Scholar 

  • Jalili, A., Shirvaikar, N., Marquez-Curtis, L., Qiu, Y., Korol, C., Lee, H., Turner, A.R., Ratajczak, M.Z. and Janowska-Wieczorek, A. (2010b) Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 38,321-32

    Article  CAS  Google Scholar 

  • Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A. and Frenette, P.S. (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407-21

    Article  PubMed  CAS  Google Scholar 

  • Kemper, C. and Hourcade, D.E. (2008) Properdin: new roles in pattern recognition and target clearance. Mol Immunol 45, 4048–4056

    Article  PubMed  CAS  Google Scholar 

  • Kim, C.H., Wan, W., Abdel-Latif, M., Wysoczynski, M., Kucia, M., Ratajczak, J. and Ratajczak, M.Z. (2010a) Evidence that a bioactive lipid, ceramide 1-phosphate (C1P), is upregulated in bone marrow microenvironment after myeloablative therapy and is a potential novel homing factor for hematopoietic stem cells. Blood 116, 179

    Google Scholar 

  • Kim, C.H., Wan, W., Rui, L., Kucia, M., Laughlin, M.J., Ratajczak, J. and Ratajczak, M.Z. (2010b) A novel paradigm in stem cell trafficking: the ratio of peripheral blood sphingosine-1 phosphate (S1P) to bone marrow ceramide-1 phosphate (C1P) regulates mobilization and homing of hematopoietic stem cells. Blood 116, 246

    Google Scholar 

  • Kim, C.H., Wan, W., Rui, L., Kucia, M., Ratajczak, J. and Ratajczak, M.Z. (2010c) An unexpected role for the complement C5b-C9 membrane attack complex (MAC) in trafficking of hematopoietic stem/progenitor cells—a novel unexpected link between innate immunity and hematopoiesis. Blood 116, 246

    Google Scholar 

  • King, A.G., Horowitz, D., Dillon, S.B., Levin, R., Farese, A.M., MacVittie, T.J. and Pelus, L.M. (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 97, 1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Kozuka, T., Ishimaru, F., Fujii, K., Masuda, K., Kaneda, K., Imai, T., Fujii, N., Ishikura, H., Hongo, S., Watanabe, T., Shinagawa, K., Ikeda, K., Niiya, K., Harada, M. and Tanimoto, M. (2003) Plasma stromal cell-derived factor-1 during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Bone Marrow Transplant 31, 651–654

    Article  PubMed  CAS  Google Scholar 

  • Kucia, M., Zhang, Y.P., Reca, R., Wysoczynski, M., Machalinski, B., Majka, M., Ildstad, S.T., Ratajczak, J., Shields, C.B. and Ratajczak, M.Z. (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20,18-28

    Article  PubMed  CAS  Google Scholar 

  • Kucia, M., Wysoczynski, M., Wu, W., Zuba-Surma, E.K., Ratajczak, J. and Ratajczak, M.Z. (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26, 2083-92

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. and Ratajczak, M.Z. (2009a) Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp 57,269-78

    Google Scholar 

  • Lee, H.M., Wu, W., Wysoczynski, M., Liu, R., Zuba-Surma, E.K., Kucia, M., Ratajczak, J. and Ratajczak, M.Z. (2009b) Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 23:2052-62

    Article  CAS  Google Scholar 

  • Lee, H.M., Wysoczynski, M., Liu, R., Shin, D.M., Kucia, M., Botto, M., Ratajczak, J. and Ratajczak, M.Z. (2010) Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 24,573-82

    Google Scholar 

  • Levesque, J.P., Takamatsu, Y., Nilsson, S.K., Haylock, D.N. and Simmons, P.J. (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98, 1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Levesque, J.P., Hendy, J., Takamatsu, Y., Williams, B., Winkler, I.G. and Simmons, P.J. (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30, 440–449

    Article  PubMed  CAS  Google Scholar 

  • Levesque, J.P., Hendy, J., Takamatsu, Y., Simmons, P.J. and Bendall, L.J. (2003a) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111, 187–196

    CAS  Google Scholar 

  • Levesque, J.P., Hendy, J., Winkler, I.G., Takamatsu, Y. and Simmons, P.J. (2003b) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31, 109–117

    Article  CAS  Google Scholar 

  • Luster, A.D., Alon, R. and von Andrian, U.H. (2005) Immune cell migration in inflammation: Present and future therapeutic targets. Nat Immunol 6, 1182-1190

    Article  PubMed  CAS  Google Scholar 

  • Lynch, K.R. (2002) Lysophospholipid receptor nomenclature. Biochim Biophys Acta 1582, 70–71

    Article  PubMed  CAS  Google Scholar 

  • Ma, Q., Jones, D. and Springer, T.A. (1999) The Chemokine Receptor CXCR4 Is Required for the Retention of B Lineage and Granulocytic Precursors within the Bone Marrow Microenvironment Immunity 10, 463 – 471

    Google Scholar 

  • Marquez-Curtis, L.A., Turner, A.R., Sridharan, S., Ratajczak, M.Z. and Janowska-Wieczorek, A. (2010) The Ins and Outs of Hematopoietic stem cells: Studies to Improve Transplantation Outcomes. Stem Cell Rev. 2010, DOI: 10.1007/s12015-010-9212-8

    Google Scholar 

  • Massberg, S., Schaerli, P., Knezevic-Maramica, I., Köllnberger, M., Tubo, N., Moseman, E.A., Huff, I.V., Junt, T., Wagers, A.J., Mazo, I.B. and von Andrian, U.H. (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994-1008

    Article  PubMed  CAS  Google Scholar 

  • Möbius-Winkler, S., Hilberg, T., Menzel, K., Golla, E., Burman, A., Schuler, G. and Adams, V. (2009) Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 107, 1943–1950

    Google Scholar 

  • Morrison, S.J., Hemmati, H.D., Wandycz, A.M. and Weissman, I.L. (1995) The purification and characterization of fetal liver hematopoietic stem cell. Proc Na l Acad Sci USA 92, 10302–6

    Google Scholar 

  • Ohkawa, R., Nakamura, K., Okubo, S., Hosogaya, S., Ozaki, Y., Tozuka, M. Osima, N., Yokota, H., Ikeda, H. and Yatomi, Y. (2008) Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Ann Clin Biochem 45, 356–363

    Article  PubMed  CAS  Google Scholar 

  • Onai, N., Zhang, Y.Y., Yoneyama, H., Kitamura, T., Ishikawa, S. and Matsushima, K. (2000) Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine Blood 96, 2074–2080

    PubMed  CAS  Google Scholar 

  • Paczkowska, E., Kucia, M., Koziarska, D., Halasa, M., Safranow, K., Masiuk, M., Karbicka, A., Nowik, M., Nowacki, P., Ratajczak, M.Z. and Machalinski, B. (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40, 1237-44

    Article  PubMed  CAS  Google Scholar 

  • Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. and Gundersen, G.G. (2004) Localized stabilization of microtubules by integrin- and FAKfacilitated Rho signaling. Science 303, 836–839

    Article  PubMed  CAS  Google Scholar 

  • Pappu, R., Schwab, S.R., Cornelissen, I., Pereira, J.P., Regard, J.B., Xu, Y., Camerer, E,, Zheng, Y.W., Huang, Y., Cyster, J.G. and Coughlin, S.R. (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298

    Article  PubMed  CAS  Google Scholar 

  • Pelus, L.M., Bian, H., King, A.G. and Fukuda, S. (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT /CXCL2delta4. Blood 103, 110–119

    Article  PubMed  CAS  Google Scholar 

  • Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L. Ponomaryov, T., Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., Sandbank, J., Zipori, D. and Lapidot, T. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol 3, 687–694

    Article  PubMed  CAS  Google Scholar 

  • Pruijt, J.F., Verzaal, P., van Os, R., de Kruijf, E.J., van Schie, M.L., Mantovani, A., Vecchi, A., Lindley, I.J., Willemze, R., Starckx, S., Opdenakker, G. and Fibbe, W.E. (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 99, 6228–6233

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, P., Rettig, M.P., Uy, G.L., Deych, E., Holt, M.S., Ritchey, J.K. and DiPersio, J.F. (2009) BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 114, 1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak, M.Z., Reca, R., Wysoczynski. M., Kucia, M., Baran, J.T., Allendorf, D.J., Ratajczak, J. and Ross, G.D. (2004) Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 18, 1482-90

    Google Scholar 

  • Ratajczak, M.Z., Reca, R., Wysoczynski, M., Yan, J. and Ratajczak, J. (2006) Modulation of the SDF-1 -CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Exp Hematol 34, 986–995

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak, M.Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M.J., Kucia, M., Janowska-Wieczorek, A. and Ratajczak, J. (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976–85

    Google Scholar 

  • Reca, R., Cramer, D., Yan, J., Laughlin, M.J., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M.Z. (2007) A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 25, 3093–3100

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, T. and Hla, T. (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92, 913–922

    Article  PubMed  CAS  Google Scholar 

  • Seitz, G., Boehmler, A.M., Kanz, L. and Möhle, R. (2005) The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci. 1044, 84-9

    Article  PubMed  CAS  Google Scholar 

  • Shirvaikar, N., Marquez-Curtis, L.A., Ratajczak, M.Z. and Janowska-Wieczorek, A. (2010) Hyaluronic Acid and Thrombin Upregulate MT1-MMP Through PI3 K and Rac-1Signaling and Prime the Homing-Related Responses of Cord Blood Hematopoietic Stem/Progenitor Cells. Stem Cells Dev. Oct 25.

    Google Scholar 

  • Simón, M.F., Andrew, C., Miriam, M., and Paul, S.F. (2009) Circadian rhythms influence hematopoietic stem cells. Current Opinion in Hematology 16, 235-242

    Article  CAS  Google Scholar 

  • Slavin, S., Mumcuoglu, M., Landsberg-Weisz, A. and Kedar, E. (1989) The use of recombinant cytokines for enhancing immunohematopoietic reconstitution following bone marrow transplantation. I. Effects of in vitro culturing with IL3 and GM-CSF on human and mouse bone marrow cells purged with mafosfamide. Bone Marrow Transplant 4,459-464

    Google Scholar 

  • Spiegel, A., Shivtiel, S., Kalinkovich, A., Ludin, A., Netzer, N., Goichberg, P., Azaria, Y., Resnick, I., Hardan, I., Ben-Hur, H., Nagler, A., Rubinstein, M. and Lapidot, T. (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34 +cells through Wnt signaling. Nat Immunol 8,1123-31

    Google Scholar 

  • Sweeney, E.A., Lortat-Jacob, H., Priestley, G.V., Nakamoto, B. and Papayannopoulou, T. (2002) Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/ progenitor cells. Blood 99, 44–51

    Article  PubMed  CAS  Google Scholar 

  • Taichman, R.S. (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105, 2631-9

    Article  PubMed  CAS  Google Scholar 

  • Thiel, S. (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 44, 3875–3888

    Article  PubMed  CAS  Google Scholar 

  • Topcuoglu, P., Arat, M., Dalva, K. and Ozcan, M. (2004) Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors. Bone Marrow Transplant 33.171-6

    Article  PubMed  CAS  Google Scholar 

  • Wagner, E. and Frank, M.M. (2010) Therapeutic potential of complement modulation. Nat Rev Drug Discov 9, 43-56

    Article  PubMed  CAS  Google Scholar 

  • Walport, M. J. (2001) Complement. First of two parts. N Engl J Med 344, 1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Weissman, I., Papaioannou, V. and Gardner, R. (1978) Fetal hematopoietic origins of the adult hemolymphoid system. In Differentiation of Normal and Neoplastic Cells (ed. B Clarkson, P Mark, J Till, New York: Cold Spring Harbor Lab. Press), 33–47

    Google Scholar 

  • Wei, S.H., Rosen, H., Matheu, M.P., Sanna, M.G., Wang, S.K., Jo, E., Wong, C.H., Parker, I. and Cahalan, M.D. (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6, 1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., Hałasa, M., Król, M., Kazmierski, M., Buszman, P., Ochała, A., Ratajczak, J., Machaliński, B. and Ratajczak, M.Z. (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53, 1-9

    Google Scholar 

  • Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C. and Weissman, I.L. (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195, 1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A. and Ratajczak, M.Z. (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105, 40-8

    Article  PubMed  CAS  Google Scholar 

  • Wysoczynski, M., Kucia, M., Ratajczak, J. and Ratajczak, M.Z. (2007) Cleavage fragments of the third complement component (C3) enhance stromal derived factor-1 (SDF-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia 21, 973-82

    PubMed  CAS  Google Scholar 

  • Wysoczynski, M., Reca, R., Lee, H., Wu, W., Ratajczak, J. and Ratajczak, M.Z. (2009) Defective engraftment of C3aR−/− hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia 23, 1455-61

    Google Scholar 

  • Yang, F.C., Atkinson, S.J., Gu, Y., Borneo, J.B., Roberts, A.W., Zheng, Y., Pennington, J. and Williams, D.A. (2001) Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 98, 5614–5618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 DK074720, Stella and Henry Endowment and EU structural funds, Innovative Economy Operational Program POIG.01.01.01-00-109/09-01, and the Henry M. and Stella M. Hoenig Endowment to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratajczak, M.Z. et al. (2012). The Role of Innate Immunity in Trafficking of Hematopoietic Stem Cells—An Emerging Link Between Activation of Complement Cascade and Chemotactic Gradients of Bioactive Sphingolipids. In: Lambris, J., Hajishengallis, G. (eds) Current Topics in Innate Immunity II. Advances in Experimental Medicine and Biology, vol 946. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0106-3_3

Download citation

Publish with us

Policies and ethics