Advertisement

Zebrafish: Model for the Study of Inflammation and the Innate Immune Response to Infectious Diseases

  • Beatriz Novoa
  • Antonio Figueras
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 946)

Abstract

The zebrafish (Danio rerio) has been extensively used in biomedical research as a model to study vertebrate development and hematopoiesis and recently, it has been adopted into varied fields including immunology. After fertilization, larvae survive with only the innate immune responses because adaptive immune system is morphologically and functionally mature only after 4–6 weeks postfertilization. This temporal separation provides a suitable system to study the vertebrate innate immune response in vivo, independently from the adaptive immune response. The transparency of early life stages allows a useful real-time visualization. Adult zebrafish which have complete (innate and adaptative) immune systems offer also advantages over other vertebrate infection models: small size, relatively rapid life cycle, ease of breeding, and a growing list of molecular tools for the study of infectious diseases. In this review, we have tried to give some examples of the potential of zebrafish as a valuable model in innate immunity and inflammation studies.

Keywords

Zebrafish (Danio rerioInflammation Innate immunity Infectious disease Ontogeny 

Notes

Acknowledgments

We want to thank the funding from the project CSD2007-00002 “Aquagenomics” of the program Consolider-Ingenio 2010 from the Spanish Ministerio de Ciencia e Innovación.

References

  1. Aggad, D., Stein, C., Sieger, D., Mazel, M., Boudinot, P., Herbomel, P., Lutfalla, G. and Leptin, M. (2010) In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish. J. Immunol. 185, 6774-6782PubMedGoogle Scholar
  2. Arslanova, D., Yang, T., Xu, X., Wong, S.T., Augelli-Szafran, C.E. and Xia, W. (2010) Phenotypic analysis of images of zebrafish treated with Alzheimer’s gamma-secretase inhibitors. BMC Biotechnol. 10, 24PubMedGoogle Scholar
  3. Balla, K.M., Lugo-Villarino, G., Spitsbergen, J.M., Stachura, D.L., Hu, Y., Bañuelos, K., Romo-Fewell, O., Aroian, R.V. and Traver, D. (2010) Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944-3954PubMedGoogle Scholar
  4. Bates, J.M., Akerlund, J., Mittge, E. and Guillemin, K. (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371-382PubMedGoogle Scholar
  5. Bertrand, J.Y., Kim, A.D., Violette, E. P., Stachura, D.L., Cisson, J.L. and Traver, D. (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147-4156PubMedGoogle Scholar
  6. Bowman, T.V. and Zon, L.I. (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem. Biol. 5, 159-161PubMedGoogle Scholar
  7. Brugman, S., Liu, K., Lindenbergh-Kortleve, D., Samsom, J.N., Furuta, G.T., Renshaw, S.A., Willemsen, R. and Nieuwenhuis, E.E. (2009) Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology 137, 1757-1767PubMedGoogle Scholar
  8. Buckley, C.E., Marguerie, A., Roach, A.G., Goldsmith, P., Fleming, A., Alderton, W.K. and Franklin, R.J. (2010) Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology 59, 149-159PubMedGoogle Scholar
  9. Carradice, D. and Lieschke, G. J. (2008) Zebrafish in hematology: sushi or science? Blood 111, 3331-3342PubMedGoogle Scholar
  10. Chang, M.X. and Nie, P. (2008) RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare. Vet. Immunol. Immunop. 124, 295-301Google Scholar
  11. Chang, M.X., Nie, P. and Wei, L.L. (2007) Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish. Mol. Immunol. 44, 3005-3023PubMedGoogle Scholar
  12. Chao, C.C., Hsu, P.C., Jen, C.F., Chen, I.H., Wang, C.H., Chan, H.C., Tsai, P.W., Tung, K.C., Wang, C.H., Lan, C.Y. and Chuang, Y.J. (2010) Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78, 2512-2521PubMedGoogle Scholar
  13. Cheesman, S.E., Neal, J.T., Mittge, E., Seredick, B.M. and Guillemin, K. (2010) Microbes and Health Sackler Colloquium: Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc. Natl. Acad. Sci. USA. Epub ahead of print Google Scholar
  14. Dahm, R. and Geisler, R. (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol. 8, 329-345PubMedGoogle Scholar
  15. Davidson, A.J. and Zon, L.I. (2004) The ’definitive’ (and ’primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233-7246PubMedGoogle Scholar
  16. Davis, J.M., Clay, H., Lewis, J.L., Ghori, N., Herbomel, P. and Ramakrishnan, L. (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693-702PubMedGoogle Scholar
  17. de Jong, J.L. and Zon, L.I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481-501PubMedGoogle Scholar
  18. Deiters, A. and Yoder, J.A. (2006) Conditional transgene and gene targeting methodologies in zebrafish. Zebrafish 3, 415-429 PubMedGoogle Scholar
  19. Dios, S., Romero, A., Chamorro, R., Figueras, A. and Novoa, B. (2010) Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish Shellfish Immunol. 29, 1019-1027 PubMedGoogle Scholar
  20. Dobrovolskaia, M.A., Medvedev, A.E., Thomas, K.E., Cuesta, N., Toshchakov, V., Ren, T., Cody, M.J., Michalek, S.M., Rice, N.R. and Vogel, S.N. (2003) Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR "homotolerance" versus "heterotolerance" on NF-kappa B signaling pathway components. J. Immunol. 170, 508-519PubMedGoogle Scholar
  21. Dobson, J.T., Seibert, J., Teh, E.M., Da’as, S., Fraser, R.B., Paw, B.H., Lin, T.J. and Berman, J.N. (2008) Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 112, 2969-2972PubMedGoogle Scholar
  22. Dooley, K. and Zon, L.I. (2000) Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252-256PubMedGoogle Scholar
  23. Driever, W. and Fishman, M.C. (1996) The zebrafish: heritable disorders in transparent embryos. J. Clin. Invest. 97, 1788-1794PubMedGoogle Scholar
  24. Du Pasquier, L. (2000) The phylogenetic origin of antigen-specific receptors. Curr. Top. Microbiol. Immunol. 248, 160-185PubMedGoogle Scholar
  25. Dzhagalov, I., St John, A. and He, Y. (2007) The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 109, 1620-1626PubMedGoogle Scholar
  26. Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A. and Lieschke, G.J. (2010) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. Epub ahead of printGoogle Scholar
  27. Fleming, A., Jankowski, J. and Goldsmith, P. (2010) In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm. Bowel Dis. 16, 1162-1172PubMedGoogle Scholar
  28. Flores, M.V., Crawford, K.C., Pullin, L.M., Hall, C.J., Crosier, K.E. and Crosier, P.S. (2010) Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem. Biophys. Res. Commun. 400, 164-168PubMedGoogle Scholar
  29. Flores, M.V., Hall, C.J., Davidson, A.J., Singh, P.P., Mahagaonkar, A.A., Zon, L.I., Crosier, K.E. and Crosier, P.S. (2008) Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2. Gastroenterology 135, 1665-1675PubMedGoogle Scholar
  30. Friedrichs, F., Zugck, C., Rauch, G.J., Ivandic, B., Weichenhan, D., Müller-Bardorff, M., Meder, M., Eddine El Mokhtari, N., Regitz-Zagrosek, V., Hetzer, R., Schäfer, A., Schreiber, S., Chen, J., Neuhaus, I., Ji, R., Siemers, N.O., Frey, N., Rottbauer, W., Katus, H.A. and Stoll, M. (2009) HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res. 19, 395-403PubMedGoogle Scholar
  31. Hall, C., Flores, M.V., Storm, T., Crosier, K. and Crosier, P. (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42Google Scholar
  32. Hama, K., Provost, E., Baranowski, T.C., Rubinstein, A.L., Anderson, J.L., Leach, S. D. and Farber, S.A. (2008) In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G445-G453PubMedGoogle Scholar
  33. Haslett, C. (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med. 160, S5-11PubMedGoogle Scholar
  34. Hegedus, Z., Zakrzewska, A., Agoston, V.C., Ordas, A., Rácz, P., Mink, M., Spaink, H.P. and Meijer, A.H.. (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol. Immunol. 46, 2918-2930PubMedGoogle Scholar
  35. Herbomel, P., Thisse, B. and Thisse, C. (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 126, 3735-3745PubMedGoogle Scholar
  36. Herbomel, P., Thisse, B. and Thisse, C. (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274-288PubMedGoogle Scholar
  37. Hortopan, G.A., Dinday, M.T. and Baraban, S.C. (2010) Zebrafish as a model for studying genetic aspects of epilepsy. Dis. Model. Mech. 3, 144-148PubMedGoogle Scholar
  38. Hsieh, J., Pan, C. and Chen, J. (2010) Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol. 29, 430-439PubMedGoogle Scholar
  39. Jackson, A.N., McLure, C.A., Dawkins, R.L. and Keating, P.J. (2007) Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. Immunogenetics 59, 861-872PubMedGoogle Scholar
  40. Jault, C., Pichon, L. and Chluba, J. (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol. Immunol. 40, 759-771PubMedGoogle Scholar
  41. Jima, D.D., Shah, R.N., Orcutt, T.M., Joshi, D., Law, J.M., Litman, G.W., Trede, N.S. and Yoder, J.A. (2009) Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Mol. Immunol. 46, 1505-1516PubMedGoogle Scholar
  42. Kanther, M. and Rawls, J.F. (2010) Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 22, 10-19PubMedGoogle Scholar
  43. Kaser, A., Zeissig, S. and Blumberg, R.S. (2010) Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573-621PubMedGoogle Scholar
  44. Kizy, A.E. and Neely, M.N. (2009) First Streptococcus pyogenes signature-tagged mutagenesis screen identifies novel virulence determinants. Infect. Immun. 77, 1854-1865PubMedGoogle Scholar
  45. Knapik, E.W. (2000) ENU mutagenesis in zebrafish–from genes to complex diseases. Mamm Genome 11, 511-519Google Scholar
  46. LaPatra, S.E., Barone, L., Jones, G.R. and Zon, L.I. (2000) Effects of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus infection on hematopoietic precursors of the zebrafish. Blood Cells Mol. Dis. 26, 445-452PubMedGoogle Scholar
  47. Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J. and Sin, Y.M. (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 28, 9-28PubMedGoogle Scholar
  48. Langenau, D.M. and Zon, L.I. (2005) The zebrafish: a new model of T-cell and thymic development. Nat. Rev. Immunol. 5, 307-317PubMedGoogle Scholar
  49. Le Guyader, D., Redd, M.J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H., and Herbomel, P. (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132-141PubMedGoogle Scholar
  50. Lepiller, S., Laurens, V., Bouchot, A., Herbomel, P., Solary, E., Chluba, J. (2007) Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. Free Radic. Biol. Med. 43, 619-627PubMedGoogle Scholar
  51. Levraud, J., Colucci-Guyon, E., Redd, M.J., Lutfalla, G. and Herbomel, P. (2008) In vivo analysis of zebrafish innate immunity. Methods Mol. Biol. 415, 337-363PubMedGoogle Scholar
  52. Li, X., Wang, S., Qi, J., Echtenkamp, S.F., Chatterjee, R., Wang, M., Boons, G.J., Dziarski, R. and Gupta, D. (2007) Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 27, 518-529PubMedGoogle Scholar
  53. Lieschke, G.J. and Currie, P.D. (2007) Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367PubMedGoogle Scholar
  54. Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C. and Layton, J.E. (2001) Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087-3096PubMedGoogle Scholar
  55. Lieschke, G.J., Oates, A.C., Paw, B.H., Thompson, M.A., Hall, N.E., Ward, A.C., Ho, R.K., Zon, L.I. and Layton, J.E. (2002) Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev. Biol. 246(2), 274-295PubMedGoogle Scholar
  56. Lin, B., Chen, S., Cao, Z., Lin, Y., Mo, D., Zhang, H., Gu, J., Dong, M., Liu, Z. and Xu, A. (2007) Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol. Immunol. 44, 295-301PubMedGoogle Scholar
  57. Liu, F. and Wen, Z. (2002) Cloning and expression pattern of the lysozyme C gene in zebrafish. Mech. Dev. 113, 69-72PubMedGoogle Scholar
  58. Locksley, R.M., Killeen, N. and Lenardo, M.J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501PubMedGoogle Scholar
  59. López-Muñoz, A., Roca, F.J., Sepulcre, M.P., Meseguer, J. and Mulero, V. (2010) Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. Dev. Comp. Immunol. 34, 546-552PubMedGoogle Scholar
  60. Lu, M., Chao, Y., Guo, T., Santi, N., Evensen, O., Kasani, S.K., Hong, J.R. and Wu, J.L. (2008) The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol. Immunol. 45, 1146-1152PubMedGoogle Scholar
  61. Maisch, B., Richter, A., Sandmöller, A., Portig, I. and Pankuweit, S. (2005) Inflammatory dilated cardiomyopathy (DCMI). Herz 30, 535-544PubMedGoogle Scholar
  62. Martin, J.S. and Renshaw, S.A. (2009) Using in vivo zebrafish models to understand the biochemical basis of neutrophilic respiratory disease. Biochem. Soc. Trans. 37, 830-837PubMedGoogle Scholar
  63. Mathias, J.R., Dodd, M.E., Walters, K.B., Rhodes, J., Kanki, J.P., Look, A.T. and Huttenlocher, A. (2007) Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J. Cell Sci. 120, 3372-3383PubMedGoogle Scholar
  64. Mathias, J.R., Dodd, M.E., Walters, K.B., Yoo, S.K., Ranheim, E.A. and Huttenlocher, A. (2009) Characterization of zebrafish larval inflammatory macrophages. Dev. Comp. Immunol. 33, 1212-1217PubMedGoogle Scholar
  65. Mathias, J.R., Perrin, B.J., Liu, T., Kanki, J., Look, A.T. and Huttenlocher, A. (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281-1288PubMedGoogle Scholar
  66. Meijer, A.H., Gabby Krens, S.F., Medina Rodriguez, I.A., He, S., Bitter, W., Ewa Snaar-Jagalska, B. and Spaink, H.P. (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol. Immunol. 40, 773-783PubMedGoogle Scholar
  67. Meijer, A.H., Van Der Sar, A.M., Cunha, C., Lamers, G.E., Laplante, M.A., Kikuta, H., Bitter, W., Becker, T.S. and Spaink, H.P. (2008) Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev. Comp. Immunol. 32, 36-49PubMedGoogle Scholar
  68. Moon, H., Jacobson, E.M., Khersonsky, S.M., Luzung, M.R., Walsh, D.P., Xiong, W., Lee, J.W., Parikh, P.B., Lam, J.C., Kang, T.W., Rosania, G.R., Schier, A.F. and Chang, Y.T. (2002) A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 124, 11608-11609PubMedGoogle Scholar
  69. Neely, M.N., Pfeifer, J.D. and Caparon, M. (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun. 70, 3904-3914PubMedGoogle Scholar
  70. Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y. and Heath, J.K. (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114-135PubMedGoogle Scholar
  71. Novoa, B., Bowman, T.V., Zon, L. and Figueras, A. (2009) LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol. 26, 326-331PubMedGoogle Scholar
  72. Novoa, B., Romero, A., Mulero, V., Rodríguez, I., Fernández, I. and Figueras, A. (2006) Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 24, 5806-5816Google Scholar
  73. Oehlers, S.H., Flores, M.V., Chen, T., Hall, C.J., Crosier, K.E. and Crosier, P.S. (2010a) Topographical distribution of antimicrobial genes in the zebrafish intestine. Dev. Comp. Immunol. doi: 10.1016/j.dci.2010.11.008Google Scholar
  74. Oehlers, S.H., Flores, M. V., Hall, C.J., O’Toole, R., Swift, S., Crosier, K.E. and Crosier, P.S. (2010b) Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev. Comp. Immunol. 34, 352-359Google Scholar
  75. Ordas, A., Hegedus, Z., Henkel, C.V., Stockhammer, O.W., Butler, D., Jansen, H.J., Racz, P., Mink, M., Spaink, H.P. and Meijer, A.H (2010) Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish Shellfish Immunol. doi: 10.1016/j.fsi.2010.08.022Google Scholar
  76. O’Toole, R., Von Hofsten, J., Rosqvist, R., Olsson, P. and Wolf-Watz, H. (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37, 41-46Google Scholar
  77. Paik, E.J., de Jong, J.L., Pugach, E., Opara, P. and Zon, L.I. (2010) A chemical genetic screen in zebrafish for pathways interacting with cdx4 in primitive hematopoiesis. Zebrafish 7, 61-68PubMedGoogle Scholar
  78. Patton, E.E. and Zon, L.I. (2001) The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956-66PubMedGoogle Scholar
  79. Peng, K., Pan, C., Chou, H. and Chen, J. (2010) Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 28, 905-917PubMedGoogle Scholar
  80. Petrie-Hanson, L., Hohn, C. and Hanson, L. (2009) Characterization of rag1 mutant zebrafish leukocytes. BMC Immunol. 10, 8PubMedGoogle Scholar
  81. Pham, L.N., Kanther, M., Semova, I. and Rawls, J.F. (2008) Methods for generating and colonizing gnotobiotic zebrafish. Nat. protoc. 3, 1862-1875PubMedGoogle Scholar
  82. Phelps, H.A., Runft, D.L. and Neely, M.N. (2009) Adult zebrafish model of streptococcal infection. Curr. Protoc. Microbiol. Chapter 9, Unit 9D.1Google Scholar
  83. Poorten, T.J. and Kuhn, R.E. (2009) Maternal transfer of antibodies to eggs in Xenopus laevis. Dev. Comp. Immunol. 33, 171-175PubMedGoogle Scholar
  84. Power, M.R., Peng, Y., Maydanski, E., Marshall, J.S. and Lin, T. (2004) The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 279, 49315-49322PubMedGoogle Scholar
  85. Purcell, M.K., Smith, K.D., Hood, L., Winton, J.R. and Roach, J.C. (2006) Conservation of Toll-Like Receptor Signaling Pathways in Teleost Fish. Comp. Biochem. Physiol. Part D 1, 77-88Google Scholar
  86. Rawls, J.F., Mahowald, M.A., Goodman, A.L., Trent, C.M. and Gordon, J.I. (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc. Natl. Acad. Sci. USA. 104, 7622-7627PubMedGoogle Scholar
  87. Rawls, J.F., Samuel, B.S. and Gordon, J.I. (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA. 101, 4596-4601PubMedGoogle Scholar
  88. Redd, M.J., Kelly, G., Dunn, G., Way, M. and Martin, P. (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell. Motil. Cytoskeleton. 63, 415-422PubMedGoogle Scholar
  89. Renshaw, S.A., Loynes, C.A., Elworthy, S., Ingham, P.W. and Whyte, M.K. (2007) Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp. Lung. Res. 33, 549-554PubMedGoogle Scholar
  90. Renshaw, S.A., Loynes, C.A., Trushell, D.M., Elworthy, S., Ingham, P.W. and Whyte, M.K. (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976-3978PubMedGoogle Scholar
  91. Rodríguez, I., Novoa, B. and Figueras, A. (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol. 25, 239-249PubMedGoogle Scholar
  92. Sanders, G.E., Batts, W.N. and Winton, J.R. (2003) Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med. 53, 514-521PubMedGoogle Scholar
  93. Schoonheim, P.J., Chatzopoulou, A. and Schaaf, M.J. (2010) The zebrafish as an in vivo model system for glucocorticoid resistance. Steroids 75, 918-925PubMedGoogle Scholar
  94. Sepulcre, M.P., Alcaraz-Pérez, F., López-Muñoz, A., Roca, F.J., Meseguer, J., Cayuela, M. L. and Mulero, V. (2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J. Immunol. 182, 1836-1845PubMedGoogle Scholar
  95. Sieger, D., Stein, C., Neifer, D., Van Der Sar, A.M. and Leptin, M. (2009) The role of gamma interferon in innate immunity in the zebrafish embryo. Dis. Model. Mech. 2, 571-581PubMedGoogle Scholar
  96. Singer, J.T., Phennicie, R.T., Sullivan, M.J., Porter, L.A., Shaffer, V.J. and Kim, C.H. (2010) Broad-host-range Plasmids for Red Fluorescent Protein Labeling of Gram-negative Bacteria for Use in the Zebrafish Model System. Appl. Environ. Microbiol. 76, 3467-3474PubMedGoogle Scholar
  97. Solnica-Krezel, L., Schier, A.F. and Driever, W. (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401-1420PubMedGoogle Scholar
  98. Stein, C., Caccamo, M., Laird, G. and Leptin, M. (2007) Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 8, R251PubMedGoogle Scholar
  99. Stern, H.M. and Zon, L.I. (2003) Cancer genetics and drug discovery in the zebrafish. Nat. Rev. Cancer 3, 533-539PubMedGoogle Scholar
  100. Stockhammer, O.W., Zakrzewska, A., Hegedûs, Z., Spaink, H.P. and Meijer, A.H. (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J. Immunol. 182, 5641-5653PubMedGoogle Scholar
  101. Streisinger, G., Walker, C., Dower, N., Knauber, D. and Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296PubMedGoogle Scholar
  102. Su, F., Juarez, M.A., Cooke, C.L., Lapointe, L., Shavit, J.A., Yamaoka, J.S. and Lyons, S.E. (2007) Differential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1. Zebrafish 4, 187-199PubMedGoogle Scholar
  103. Sullivan, C. and Kim, C. H. (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25, 341-50PubMedGoogle Scholar
  104. Sullivan, C., Charette, J., Catchen, J., Lage, C.R., Giasson, G., Postlethwait, J.H., Millard, P.J. and Kim, C.H. (2009) The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J. Immunol. 183, 5896-5908PubMedGoogle Scholar
  105. Sun, G., Li, H., Wang, Y., Zhang, B. and Zhang, S. (2010) Zebrafish complement factor H and its related genes: identification, evolution, and expression. Funct. Integr. Genomics 10, 577-587PubMedGoogle Scholar
  106. Swaim, L.E., Connolly, L.E., Volkman, H.E., Humbert, O., Born, D.E. and Ramakrishnan, L. (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74, 6108-6117PubMedGoogle Scholar
  107. Takeda, N. (2003) Cardiomyopathy: molecular and immunological aspects (review). Int. J. Mol. Med. 11, 13-16PubMedGoogle Scholar
  108. Towbin, J.A. and Bowles, N.E. (2006) Dilated cardiomyopathy: a tale of cytoskeletal proteins and beyond. J. Cardiovasc. Electr. 17, 919-926Google Scholar
  109. Traver, D., Herbomel, P., Patton, E.E., Murphey, R.D., Yoder, J.A., Litman, G.W., Catic, A., Amemiya, C.T., Zon, L.I. and Trede, N.S. (2003) The zebrafish as a model organism to study development of the immune system. Adv. Immunol. 81, 253-330PubMedGoogle Scholar
  110. Trede, N.S. and Zon, L.I. (1998) Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253-263PubMedGoogle Scholar
  111. Trede, N.S., Langenau, D.M., Traver, D., Look, A.T. and Zon, L.I. (2004) The use of zebrafish to understand immunity. Immunity 20, 367-379PubMedGoogle Scholar
  112. Trede, N.S., Zapata, A. and Zon, L.I. (2001) Fishing for lymphoid genes. Trends Immunol. 22, 302-307PubMedGoogle Scholar
  113. Triantafilou, M., Lepper, P.M., Briault, C.D., Ahmed, M.A.E. and Dmochowski, J.M. (2008) Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide sensing apparatus. Eur. J. Immunol. 38, 192–203PubMedGoogle Scholar
  114. Van Der Sar, A.M., Appelmelk, B.J., Vandenbroucke-Grauls, C.M. and Bitter, W. (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol. 12, 451-457PubMedGoogle Scholar
  115. Van Der Sar, A.M., Musters, R.J., Van Eeden, F.J., Appelmelk, B.J., Vandenbroucke-Grauls, C.M. and Bitter,W. (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell. Immunol. 5, 601-611Google Scholar
  116. Van Der Sar, A.M., Spaink, H.P., Zakrzewska, A., Bitter, W. and Meijer, A.H. (2009) Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Mol. Immunol. 46, 2317-2332PubMedGoogle Scholar
  117. Venkatesh, B. (2003) Evolution and diversity of fish genomes. Curr. Opin. Genet. Dev. 13, 588-592PubMedGoogle Scholar
  118. Vojtech, L.N., Sanders, G.E., Conway, C., Ostland,V. and Hansen, J.D. (2009) Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect. Immun. 77, 914-925Google Scholar
  119. Volff, J. (2005) Genome evolution and biodiversity in teleost fish. Heredity 94, 280-294PubMedGoogle Scholar
  120. Walters, K.B., Dodd, M.E., Mathias, J.R., Gallagher, A.J., Bennin, D.A., Rhodes, J., Kanki, J.P., Look, A.T., Grinblat, Y. and Huttenlocher, A. (2009) Muscle degeneration and leukocyte infiltration caused by mutation of zebrafish Fad24. Dev. Dyn. 238, 86-99PubMedGoogle Scholar
  121. Walters, K.B., Green, J.M., Surfus, J.C., Yoo, S.K. and Huttenlocher, A. (2010) Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood 116, 2803-2811PubMedGoogle Scholar
  122. Wang, C., Tao, W., Wang, Y., Bikow, J., Lu, B., Keating, A., Verma, S., Parker, T.G., Han, R. and Wen, X.Y. (2010) Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol. 58, 418-426PubMedGoogle Scholar
  123. Wang, Z., Zhang, S., Tong, Z., Li, L., and Wang, G. (2009) Maternal transfer and protective role of the alternative complement components in zebrafish Danio rerio. PLoS ONE 4, e4498PubMedGoogle Scholar
  124. Wang, Z., Zhang, S., Wang, G., and An, Y. (2008a) Complement activity in the egg cytosol of zebrafish Danio rerio: evidence for the defense role of maternal complement components. PLoS ONE 3, e1463Google Scholar
  125. Wang, Z., Zhang, S., and Wang, G. (2008b) Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25, 264-270Google Scholar
  126. West, M.A. and Heagy, W. (2002) Endotoxin tolerance: A review. Crit. Care Med. 30, S64-S73Google Scholar
  127. Wienholds, E., Schulte-Merker, S., Walderich, B. and Plasterk, R.H. (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99-102PubMedGoogle Scholar
  128. Willett, C.E., Cortes, A., Zuasti, A. and Zapata, A.G. (1999) Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323-336PubMedGoogle Scholar
  129. Willett, C. E., Zapata, A. G., Hopkins, N. and Steiner, L.A. (1997) Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331-341PubMedGoogle Scholar
  130. Wu, Z., Zhang, W., Lu, Y. and Lu, C. (2010) Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb. Pathog. 48, 178-187PubMedGoogle Scholar
  131. Xu, Z., Li, Y., Xiang, Q., Pei, Z., Liu, X., Lu, B., et al. (2010) Design and synthesis of novel xyloketal derivatives and their vasorelaxing activities in rat thoracic aorta and angiogenic activities in zebrafish angiogenesis Screen. J. Med. Chem. 53, 4642-4653PubMedGoogle Scholar
  132. Yazawa, R., Hirono, I. and Aoki, T. (2006) Transgenic zebrafish expressing chicken lysozyme show resistance against bacterial diseases. Transgenic Res. 15, 385-391PubMedGoogle Scholar
  133. Yoder, J.A. (2009) Form, function and phylogenetics of NITRs in bony fish. Dev. Comp. Immunol. 33, 135-144Google Scholar
  134. Yoder, J.A., Mueller, M.G., Wei, S., Corliss, B.C., Prather, D. M., Willis, T., Litman R.T., Djeu J.Y. and Litman G.W. (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc. Natl. Acad. Sci. USA 98, 6771-6776PubMedGoogle Scholar
  135. Yoder, J.A., Nielsen, M.E., Amemiya, C.T., and Litman, G.W. (2002) Zebrafish as an immunological model system. Microb. Infect. 4, 1469-1478Google Scholar
  136. Yoo, S.K., Deng, Q., Cavnar, P.J., Wu, Y. I., Hahn, K.M. and Huttenlocher, A. (2010) Differential regulation of protrusion and polarity by PI3 K during neutrophil motility in live zebrafish. Dev. Cell 18, 226-236PubMedGoogle Scholar
  137. Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-de Frías, C. and Cortés, A. (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol. 20, 126-136PubMedGoogle Scholar
  138. Zon, L.I. and Peterson, R.T. (2005) In vivo drug discovery in the zebrafish. Nature Rev. Drug Discov. 4, 35-344Google Scholar
  139. Zou, J., Mercier, C., Koussounadis, A. and Secombes, C. (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol. 44, 638-647PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de Investigaciones MarinasCSICVigoSpain

Personalised recommendations