DDSM and Applications

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter, we review the principles of delta-sigma modulation. We classify Delta-Sigma Modulators (DSMs) based on the types of signals they process and describe applications for each. Digital DSMs (DDSM) are used in fractional-N frequency synthesizers and oversampling Digital-to-Analog Converters (DACs). We review the basic operation of a delta-sigma DAC. Then we give an introduction to fractional-N synthesizers and the use of delta-sigma modulation in these systems. We highlight the problem of spurious tones in DDSMs resulting from short cycle lengths and indicate how they degrade the performance of the synthesizers. The chapter provides Simulink models and Matlab code for MASH, Multi-bit EFM and multi-bit SQ DDSMs.

Keywords

Attenuation Autocorrelation Settling Summing 

References

  1. 4.
    S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulaion. New York: IEEE Press, 1997.Google Scholar
  2. 5.
    M. Kozak and I. Kale, Oversampled Delta-Sigma Modulators, Analysis, Applications and Novel Topologies. Boston: Kluwer Academic Publishers, 2003.Google Scholar
  3. 6.
    R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New Jersey: IEEE Press, 2004.CrossRefGoogle Scholar
  4. 7.
    A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999.Google Scholar
  5. 9.
    S. Pamarti and I. Galton, “LSB dithering in MASH delta-sigma D/A converters,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 4, pp. 779–790, Apr. 2007.CrossRefMathSciNetGoogle Scholar
  6. 17.
    R. Gray and D. Neuhoff, “Quantization,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2325–2383, 1998.MATHCrossRefMathSciNetGoogle Scholar
  7. 21.
    Y. Shu, B. Song, and K. Bacrania, “A 65 nm CMOS CT Δ Σ modulator with 81dB DR and 8 MHz BW auto-tuned by pulse injection,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2008, pp. 500–501.Google Scholar
  8. 22.
    S. Ouzounov, E. Roza, J. Hegt, G. van der Weide, and A. van Roermund, “Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 588–596, Mar. 2006.CrossRefGoogle Scholar
  9. 23.
    E. Roza, “Analog-to-digital conversion via duty-cycle modulation,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 11, pp. 907–914, 1997.CrossRefGoogle Scholar
  10. 24.
    J. Daniels, W. Dehaene, M. Steyaert, and A. Wiesbauer, “A/D conversion using an asynchronous delta-sigma modulator and a time-to-digital converter,” in Proceedings of ISCAS 2008, IEEE International Symposium on Circuits and Systems, May 2008, pp. 1648–1651.Google Scholar
  11. 25.
    P. Malla, H. Lakdawala, K. Kornegay, and K. Soumyanath, “A 28mW spectrum-sensing re-configurable 20 MHz 72dB-SNR 70dB-SNDR DT Δ Σ ADC for 802.11 n/WiMAX receivers,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2008, pp. 496–631.Google Scholar
  12. 26.
    Y. Chae, I. Lee, and G. Han, “A 0.7 V 36 μW 85 dB-DR audio Δ Σ modulator using class-C inverter,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2008, pp. 490–630.Google Scholar
  13. 27.
    T. Hamasaki, Y. Shinohara, H. Terasawa, K. Ochiai, M. Hiraoka, and H. Kanayama, “A 3-V, 22-mW multibit current-mode DAC with 100dB dynamic range,” IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 1888–1894, 1996.CrossRefGoogle Scholar
  14. 28.
    R. Adams and K. Nguyen, “A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1871–1878, 1998.CrossRefGoogle Scholar
  15. 30.
    I. Fujimori, A. Nogi, and T. Sugimoto, “A multibit delta-sigma audio DAC with 120-dB dynamic range,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1066–1073, 2000.CrossRefGoogle Scholar
  16. 31.
    M. Annovazzi, V. Colonna, G. Gandolfi, F. Stefani, and A. Baschirotto, “A low-power 98-dB multibit audio DAC in a standard 3.3-V 0.35-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 37, no. 7, pp. 825–834, 2002.CrossRefGoogle Scholar
  17. 32.
    V. Colonna, M. Annovazzi, G. Boarin, G. Gandolfi, F. Stefani, and A. Baschirotto, “A 0.22-mm2 7.25-mW per-channel audio stereo-DAC with 97-dB DR and 39-dB SNRout,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1491–1498, 2005.CrossRefGoogle Scholar
  18. 33.
    K. Nguyen, A. Bandyopadhyay, B. Adams, K. Sweetland, and P. Baginski, “A 108dB SNR 1.1 mW oversampling audio DAC with a three-level DEM technique,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, 2008, pp. 488–630.Google Scholar
  19. 34.
    M. Perrott et al., “A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 2048–2060, 1997.CrossRefGoogle Scholar
  20. 42.
    E. Temporiti, G. Albasini, I. Bietti, R. Castello, and M. Colombo, “A 700-kHz bandwidth Σ Δ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1446–1454, 2004.CrossRefGoogle Scholar
  21. 43.
    T. Riley and M. Copeland, “A simplified continuous phase modulator technique,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 41, no. 5, pp. 321–328, 1994.CrossRefGoogle Scholar
  22. 44.
    B. D. Muer and M. Steyaert, CMOS Fractional-N Synthesizers: Design for High Spectral Purity and Monolithic Integration. Boston: Kluwer Academic Publishers, 2003.Google Scholar
  23. 45.
    B. Razavi, Ed., Phase-Locking in High-Performance Systems. New York: IEEE Press, 2003.Google Scholar
  24. 46.
    K. Lee et al., “A 0.8 V, 2.6 mW, 88 dB dual-channel audio delta-sigma D/A converter with headphone driver,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 916–927, Mar. 2009.CrossRefGoogle Scholar
  25. 47.
    B. Razavi, “Challenges in the design of frequency synthesizers for wireless applications,” in Proceedings of IEEE CICC 1997, IEEE Custom Integrated Circuits Conference, May 1997, pp. 395–402.Google Scholar
  26. 48.
    J. Rogers, C. Plett, and F. Dai, Integrated Circuit Design for High-speed Frequency Synthesis. Boston: Artech House, 2006.Google Scholar
  27. 49.
    B. Razavi, Design of Analog CMOS Integrated Circuits. Boston: McGraw-Hill, 2001.Google Scholar
  28. 50.
    F. Gardner, “Charge-pump phase-locked loops,” IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849–1858, 1980.CrossRefGoogle Scholar
  29. 51.
    Z. Ye, “Modelling, simulation and architecture modification of delta-sigma fractional-N frequency synthesizers,” Ph.D. dissertation, University College Cork, 2008.Google Scholar
  30. 52.
    C. A. Kingsford-Smith, Patent No. 3,928,813. Washington, DC: US Patent Office, 1975.Google Scholar
  31. 53.
    U. Rohde and J. Wiley, Microwave and Wireless Synthesizers: Theory and Design. Colorado: Wiley, 1997.CrossRefGoogle Scholar
  32. 54.
    B. Miller and B. Conley, “A multiple modulator fractional divider,” in Proceedings of the 44th Annual Symposium on Frequency Control, 1990, pp. 559–568.Google Scholar
  33. 55.
    B. Miller and R. J. Conley, “A multiple modulator fractional divider,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, pp. 578–583, 1991.CrossRefGoogle Scholar
  34. 56.
    T. A. D. Riley, M. A. Copland, and T. A. Kwasniewski, “Delta-sigma modulation in fractional-N frequency synthesis,” IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp. 553–559, May 1993.CrossRefGoogle Scholar
  35. 57.
    Z. Ye and M. P. Kennedy, “Modeling and simulation of fractional-N PLL frequency synthesizer in Verilog-AMS,” Transactions on IEICE, vol. E90-A, no. 10, pp. 2141–2147, Oct. 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cypress SemiconductorCorkIreland
  2. 2.University College CorkCorkIreland

Personalised recommendations