Skip to main content

Scalar Riemann–Hilbert Problem for Multiply Connected Domains

  • Chapter
  • First Online:
Book cover Functional Equations in Mathematical Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 52))

Abstract

We solve the scalar Riemann–Hilbert problem for circular multiply connected domains. The method is based on the reduction of the boundary value problem to a system of functional equations (without integral terms). In the previous works, the Riemann–Hilbert problem and its partial cases such as the Dirichlet problem were solved under geometrical restrictions to the domains. In the present work, the solution is constructed for any circular multiply connected domain in the form of modified Poincaré series.

Mathematics Subject Classification (2000): Primary 30E25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Despite the method of truncation can be effective in numeric computations, one can hardly accept that this method yields a closed form solution. Any way it depends on the definition of the term “closed form solution”. By my private definition, reduction of a boundary value problem to an integral equation does not yields a closed form solution. A regular infinite system [18] can be considered as an equation with compact operator, i.e., it is no more than a discreet form of an Fredholm integral equation.

References

  1. Akaza, T.: Singular sets of some Klainian groups. Nagoya Math. J. 26, 127–143 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Akaza, T., Inoue, K.: Limit sets of geometrically finite free Klainian groups. Tohoku Math. J. 36, 1–16 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhiezer, N.I.: Elements of the Theory of Elliptic Functions. Nauka, Moscow, 1970 (in Russian); English transl.: AMS, Providence, Rhode Island (1990)

    Google Scholar 

  4. Aleksandrov, I.A., Sorokin, A.S.: The problem of Schwarz for multiply connected domains. Sib. Math. Zh. 13, n. 5, 971–1001 (1972) (in Russian)

    Google Scholar 

  5. Baker, H.F.: Abelian Functions. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Bancuri, R.D.: On the Riemann–Hilbert problem for doubly connected domains. Soobsch. AN GruzSSR 80, n. 4, 549–552 (1975) (in Russian)

    Google Scholar 

  7. Bojarski, B.: On generalized Hilbert boundary value problem. Soobsch. AN GruzSSR 25, n. 4, 385–390 (1960) (in Russian)

    Google Scholar 

  8. Koppenfels, V., Schtalman, Tz.: Practice of conformal mappings, Moscow, IL (1963) (in Russian)

    Google Scholar 

  9. Crowdy, D.: Explicit solution of a class of Riemann–Hilbert problems. Annales Universitatis Paedagogicae Cracoviensis, Studia Mathematica VIII (2009) http,://mat.ap.krakow.pl/aapc/index.php/studmath/article/view/77/58 (online version)

  10. Crowdy, D.: The Schwarz problem in multiply connected domains and the SchottkyKlein prime function. Complex Variables and Elliptic Equations 53, No. 3, 221–236 (2008)

    Google Scholar 

  11. Crowdy, D.: Geometric function theory: a modern view of a classical subject. Nonlinearity 21, T205–T219 (2008) http://www.iop.org/EJ/abstract/0951-7715/21/10/T04/

  12. Dunduchenko, L.E.: On the Schwarz formula for an n-connected domain. Dopovedi AN URSR 5, 1386–1389 (1966) (in Ukrainian)

    Google Scholar 

  13. Gakhov, F.D.: Boundary Value Problems. Nauka, Moscow (1977) (3rd edition; in Russian); Engl. transl. of 1st ed.: Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  14. Golusin, G.M.: Solution of basic plane problems of mathetical physics for the case of Laplace equation and multiply connected domains bounded by circles (method of functional equations). Math. Zb. 41:2, 246–276 (1934)

    Google Scholar 

  15. Golusin, G.M.: Solution of spatial Dirichlet problem for Laplace equation and for domains enbounded by finite number of spheres. Math. Zb. 41:2, 277–283 (1934)

    Google Scholar 

  16. Golusin, G.M.: Solution of plane heat conduction problem for multiply connected domains enclosed by circles in the case of isolated layer. Math. Zb. 42:2, 191–198 (1935)

    Google Scholar 

  17. Golusin, G.M.: Geometric Theory of Functions of Complex Variable. Nauka, Moscow (1966) (2nd ed.; in Russian); Engl. transl. by AMS, Providence, RI (1969)

    Google Scholar 

  18. Kantorovich, L.V., Krylov, V.I.: Approximate methods of higher analysis, Groningen, Noordhoff (1958)

    Google Scholar 

  19. Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutickii, Ja.B., Stecenko, V.Ja.: Approximate Methods for Solution of Operator Equations. Nauka, Moscow (1969) (in Russian); Engl. transl.: Wolters-Noordhoff Publ., Groningen (1972)

    Google Scholar 

  20. Kveselava, D.A.: Riemann–Hilbert problem for multiply connected domain. Soobsch. AN GruzSSR 6, n. 8, 581–590 (1945) (in Russian)

    Google Scholar 

  21. Kuczma, M., Choczewski, B., Ger, R.: Iterative functional equations. Encyclopedia Math. Appl. 32, Cambridge University Press (1990)

    Google Scholar 

  22. Markushevich, A.I.: On a boundary value problem of analytic function theory. Uch. Zapiski MGU 1, vyp. 100, 20–30 (1946) (in Russian)

    Google Scholar 

  23. Mikhailov, L.G.: On a boundary value problem. DAN SSSR 139, 294–297 (1961) (in Russian)

    Google Scholar 

  24. Mikhailov, L.G.: New Class of Singular Integral Equations and its Applications to Differential Equations with Singular Coefficients. AN TadzhSSR, Dushanbe (1963) (in Russian); English transl.: Akademie Verlag, Berlin (1970)

    Google Scholar 

  25. Mikhlin, S.G.: Integral Equations. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  26. Mityushev, V.V.: Solution of the Hilbert boundary value problem for a multiply connected domain. Slupskie Prace Mat.-Przyr. 9a, 37–69 (1994)

    Google Scholar 

  27. Mityushev, V.V.: Generalized method of Schwarz and addition theorems in mechanics of materials containing cavities. Arch. Mech. 47, 1169–1181 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Mityushev, V.V.: Convergence of the Poincaré series for classical Schottky groups. Proc. Amer. Math. Soc. 126, 2399–2406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mityushev, V.V.: Hilbert boundary value problem for multiply connected domains. Complex Variables 35, 283–295 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mityushev, V.V., Rogosin, S.V.: Constructive methods to linear and non-linear boundary value problems for analytic function. Theory and Applications. Chapman & Hall / CRC, Monographs and Surveys in Pure and Applied Mathematics, Boca Raton etc. (2000)

    Google Scholar 

  31. Muskhelishvili, N.I.: To the problem of torsion and bending of beams constituted from different materials. Izv. AN SSSR 7, 907–945 (1932) (in Russian)

    Google Scholar 

  32. Muskhelishvili, N.I.: Singular Integral Equations. Nauka, Moscow (1968) (3rd edition; in Russian); English translation of the 1st ed.: Noordhoff, Groningen (1946)

    MATH  Google Scholar 

  33. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Elasticity Theory. Nauka, Moscow (1966) (5th edition: in Russian); English translation of the 1st ed.: Noordhoff, Groningen (1953)

    Google Scholar 

  34. Poincaré, H.: Oeuvres. Gauthier-Villart, Paris, v. 2 (1916); v. 4 (1950); v. 9 (1954)

    Google Scholar 

  35. Smith, B., Björstad, P., Gropp, W.: Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press (1996)

    MATH  Google Scholar 

  36. Vekua, I.N., Rukhadze, A.K.: The problem of the torsion of circular cylinder reinforced by transversal circular beam. Izv. AN SSSR 3, 373–386 (1933)

    Google Scholar 

  37. Vekua, I.N., Rukhadze, A.K.: Torsion and transversal bending of the beam compounded by two materials restricted by confocal ellipces. Prikladnaya Matematika i Mechanika (Leningrad) 1, n. 2, 167–178 (1933)

    Google Scholar 

  38. Vekua, I.N.: Generalized Analytic Functions. Nauka, Moscow (1988) (in Russian)

    MATH  Google Scholar 

  39. Vekua, N.P.: Systems of Singular Integral Equations. Noordhoff, Groningen (1967)

    MATH  Google Scholar 

  40. Zmorovich, V.A.: On a generalization of the Schwarz integral formula on n-connected domains. Dopovedi URSR 5, 489–492 (1958) (in Ukranian)

    Google Scholar 

  41. Zverovich, E.I.: Boundary value problems of analytic functions in Hölder classes on Riemann surfaces. Uspekhi Mat. Nauk 26(1), 113–179 (1971) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Mityushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mityushev, V.V. (2011). Scalar Riemann–Hilbert Problem for Multiply Connected Domains. In: Rassias, T., Brzdek, J. (eds) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications(), vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0055-4_38

Download citation

Publish with us

Policies and ethics