Skip to main content

A Cell-Based Model of Endothelial Cell Migration, Proliferation, and Maturation in Corneal Angiogenesis

  • Chapter
  • First Online:
  • 902 Accesses

Abstract

In this chapter, we present a cell-based model of angiogenesis that operates at the molecular, cellular, and tissue levels. In this new modeling framework, each endothelial cell is regarded as a viscoelastic spring and thus the vasculature is modeled as a spring network. Endothelial cells (ECs) located at the sprout tip lead the extension of blood vessels, and the endothelial cell proliferative activity is regulated by vascular endothelial growth factor (VEGF) and angiopoietins. This angiogenesis model allows for a detailed study of the relative roles of EC migration, proliferation, and maturation during blood vessel development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • M.M. Sholley, G.P. Ferguson, H.R. Seibel, J.L. Montour, and J.D. Wilson. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest., 51:624–634, 1984.

    CAS  PubMed  Google Scholar 

  • L.J. Thompson, F. Wang, A.D. Proia, K.G. Peters, B. Jarrold, and K.D. Greis. Proteome analysis of the rat cornea during angiogenesis. Proteomics, 3:2258–2266, 2003.

    Article  CAS  PubMed  Google Scholar 

  • D.H. Ausprunk and J. Folkman. Migration and proliferation of endothelial cells in preformed and newly-formed blood vessels during tumor angiogenesis. Microvasc. Res., 14:53–65, 1977.

    Article  CAS  PubMed  Google Scholar 

  • D. Balding and D.L.S. McElwain. A mathematical model of tumor-induced capillary growth. J. Theor. Biol., 114:53–73, 1985.

    Article  CAS  PubMed  Google Scholar 

  • H.M. Byrne and M.A.J. Chaplain. Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions. Bull. Math. Biol., 57:461–486, 1995.

    Article  CAS  PubMed  Google Scholar 

  • H.M. Byrne and M.A.J. Chaplain. Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis. Appl. Math. Lett., 9:69–74, 1996.

    Article  Google Scholar 

  • A.R.A. Anderson and M.A.J. Chaplain. A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl. Math. Lett., 11:109–114, 1998.

    Article  Google Scholar 

  • A.R.A. Anderson and M.A.J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60:857–900, 1998.

    Article  CAS  PubMed  Google Scholar 

  • H.A. Levine, S. Pamuk, B.D. Sleeman, and M. Nilsen-Hamilton. Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma. Bull. Math. Biol., 63:801–863, 2001.

    Article  CAS  PubMed  Google Scholar 

  • B.D. Sleeman and I.P. Wallis. Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation. J. Math. Comp. Modeling, 36:339–358, 2002.

    Article  Google Scholar 

  • M.J. Plank and B.D. Sleeman. A reinforced random walk model of tumor angiogenesis and anti-angiogenesis strategies. IMA J. Math. Med. Biol., 20:135–181, 2003.

    Article  CAS  Google Scholar 

  • M.J. Plank and B.D. Sleeman. Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol., 66:1785–1819, 2004.

    Article  CAS  PubMed  Google Scholar 

  • M.J. Plank, B.D. Sleeman, and P.F. Jones. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J. Theor. Biol., 229:435–454, 2004.

    Article  CAS  PubMed  Google Scholar 

  • H.A. Levine and M. Nilsen-Hamilton. Angiogenesis-A Biochemial/Mathematical Perspective. In Aver Friedman, editor, Tutorials in Mathematical Biosciences III, number 1872 in Lecture Notes in Mathematics, chapter 2, page 65. Springer, 2006.

    Google Scholar 

  • C.L. Stokes and D.A. Lauffenburger. Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis. J. Theor. Biol., 152:377–403, 1991.

    Article  CAS  PubMed  Google Scholar 

  • S. Tong and F. Yuan. Numerical simulations of angiogenesis in the cornea. Microvasc. Res., 61:14–27, 2001.

    Article  CAS  PubMed  Google Scholar 

  • S. Sun, M.F. Wheeler, M. Obeyesekere, and C. Patrick. A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol., 67:313–337, 2005.

    Article  CAS  PubMed  Google Scholar 

  • J.L. Gevertz and S. Torquato. Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol., 243:517–531, 2006.

    Article  CAS  PubMed  Google Scholar 

  • F. Milde, M. Bergdorf, and P. Koumoutsakos. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophysical Journal, 95:3146–3160, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.M. Peirce, E.J. Van Gieson, and T.C. Skalak. Multicellular simulation predicts microvascular patterning and in silico tissue assembly. The FASEB Journal, Feb 2004.

    Google Scholar 

  • A. Bauer, T. Jackson, and Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophysical Journal, 92:3105, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Qutub and A. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Systems Biology, 3(1):13, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • N. Mantzaris, S. Webb, and H.G. Othmer. Mathematical modeling of tumor-induced angiogenesis. J. Math Biol., 49:111–187, 2004.

    Article  PubMed  Google Scholar 

  • T. Jackson and X. Zheng. A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull. Math. Biol., 72:830–868, 2010.

    Article  PubMed  Google Scholar 

  • C.E. Semino, R.D. Kamm, and D.A. Lauffenburger. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res., 312:289–298, 2006.

    CAS  PubMed  Google Scholar 

  • H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol., 162, 2003.

    Google Scholar 

  • F. De Smet, I. Segura, K. De Bock, P.J. Hohensinner, and P. Carmeliet. Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol, 29(5):639–649, 2009.

    Article  PubMed  Google Scholar 

  • L.E. Benjamin, D. Golijanin, A. Itin, D. Pode, and E. Keshet. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest., 103(2):159–165, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.W. Griffioen and J. Molema. Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol.Rev., 52(2):237–268, 2000.

    CAS  PubMed  Google Scholar 

  • S. Davis, T.H. Aldrich, P.F. Jones, A. Acheson, D.L. Compton, V. Jain, T.E. Ryan, J. Bruno, C. Radziejewski, P.C. Maisonpierre, and G.D. Yancopoulos. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell, 87(7):1161–1169, 1996.

    Article  CAS  PubMed  Google Scholar 

  • P.C. Maisonpierre, C. Suri, P.F. Jones, S. Bartunkova, S.J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T.H. Aldrich, N. Papadopoulos, T.J. Daly, S. Davis, T.N. Sato, and G.D. Yancopoulos. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277:55–60, 1997.

    Article  CAS  PubMed  Google Scholar 

  • H.G. Augustin, G. Young Koh, G. Thurston, and K. Alitalo. Control of vascular morphogenesis and homeostasis through the angiopoietin-tie system. Nat Rev Mol Cell Biol, 10(3):165–177, 2009.

    Article  CAS  PubMed  Google Scholar 

  • B. Witzenbichler, P.C. Maisonpierre, P. Jones, G.D. Yancopoulos, and J.M. Isner. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie-2. J. Biol. Chem., 273:18514–18521, 1998.

    Article  CAS  PubMed  Google Scholar 

  • M. Scharpfenecker, U. Fiedler, Y. Reiss, and H.G. Augustin. The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci., 118:771–780, 2005.

    Article  CAS  PubMed  Google Scholar 

  • T. Ashara, D. Chen, T. Takahashi, K. Fujikawa, M. Kearney, M. Magner, G.D. Yancopoulos, and J.M. Isner. Tie-2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularisation. Circ. Res., 83:233–240, 1998.

    Article  Google Scholar 

  • L. Edelstein-Keshet. Mathematical Models In Biology. McGraw-Hill Companies, 1998.

    Google Scholar 

  • A.R.A. Anderson, M.A.J. Chaplain, and K.A. Rejniak, editors. Mathematics and Biosciences in Interaction. Birkhauser Verlag Basel/Switzerland, 2007.

    Google Scholar 

  • K. Larripa and A. Mogilner. Transport of a 1d viscoelastic actin-myosin strip of gel as a model of a crawling cell. Physica A, 372:113–123, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K.D. Costa, A.J. Sim, and F.C. Yin. Non-hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. Journal of Biomechanical Engineering, 128(2):176–184, 2006.

    Article  PubMed  Google Scholar 

  • O. Thoumine and A. Ott. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci., 110:2109–2116, 1997.

    Article  CAS  PubMed  Google Scholar 

  • M. Prass, K. Jacobson, A. Mogilner, and M. Radmacher. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol., 174(6):767–772, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Othmer and A. Stevens. Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math., 57:1044–1081, 1997.

    Article  Google Scholar 

  • S. Guido and R.T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. J. Cell Sci., 105, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackson, T.L., Zheng, X. (2012). A Cell-Based Model of Endothelial Cell Migration, Proliferation, and Maturation in Corneal Angiogenesis. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_7

Download citation

Publish with us

Policies and ethics