Skip to main content

Alcohol, Altered Protein Homeostasis, and Cancer

  • Chapter
  • First Online:
  • 829 Accesses

Abstract

Epidemiological studies provide convincing evidence that alcohol consumption is an etiological inducer of human cancers originated primarily in the upper aerodigestive tract, liver, colorectum and female breast, while association is suggested for cancers of the lung and pancreas. The underlying mechanism of alcohol induced tumorigenesis is incompletely understood, but plausible hypotheses suggest mechanisms that are intimately intertwined with alcohol metabolism including the genotoxic effect of acetaldehyde, increased production of reactive oxygen and nitrogen species, altered folate availability and increased estrogen secretion. Alcohol also induces the evolutionally highly conserved cellular stress pathways: the Heat Shock Response (HSR) in the cytoplasm and the Unfolded Protein Response (UPR) in the endoplasmic reticulum, which lead to massive up-regulation of Heat Shock Protein (HSP) expression in both subcellular compartments. HSPs are molecular chaperones that guard against illicit and promiscuous interaction between proteins and serve cytoprotective and anti-apoptotic roles to safeguard and restore normal protein homeostasis or proteostasis following proteotoxic insults (Fig. 8.1). Surprisingly, while HSPs and their master transcriptional regulator Heat Shock Factor 1 (HSF1) increase fitness, subsistence and longevity under most circumstances, recent studies suggest that in cancer cells their augmented expression promote tumorigenesis and rapid somatic evolution under the hostile acidic, nutrient-limiting tumor environment and compromise survival. Elevated level of HSPs is vital to support many types of tumor growth, thus, inhibiting the chaperone function of HSP70 and HSP90 in cancer cells leads to apoptosis and tumor regression. Consequently, HSPs and HSF1 have become the target of rational anticancer drug design representing a new class of tumorigenesis regulators beside oncogenes and tumor suppressors that can be pharmacologically modulated for anticancer treatment. Hence, studying the role of HSF1 and HSPs in alcohol-induced carcinogenesis is critical to gain understanding to their contribution to the oncogenesis process and develop new strategies for prevention, diagnosis and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AKRB10:

Aldo-keto reductase 1B10

ALD:

Alcoholic liver disease

Apaf-1:

Apoptotic peptidase activating factor 1

APC/C:

Anaphase Promoting Complex C

CRC:

Colorectal cancer

DBD:

DNA binding domain

DNA-PK:

DNA damage response kinase

ESCC:

Esophageal squamous cell carcinoma

FAH:

Fumarylacetoacetate hydrolase

GR:

Glucocorticiod receptor

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

HRGβ1:

Heregulin β1

HSE:

Heat shock element

HSF:

Heat shock factor

HSP:

Heat shock protein

HSR:

Heat shock response

HT1:

Hereditary tyrosinemia type 1

IL-1β:

Interleukin 1 beta

PDC:

Programmed cell death

PDIA3:

Protein disulfide isomerase-associated 3

PN:

Proteostasis network

ROS:

Reactive oxygen species

TNFα:

Tumor necrosis factor alpha

uPA:

Urokinase plasminogen activator

UPR:

Unfolded protein response

References

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Agoff SN, Hou J, Linzer DI, Wu B (1993) Regulation of the human hsp70 promoter by p53. Science 259:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960.

    PubMed  CAS  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486–2496.

    PubMed  CAS  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159.

    Article  PubMed  CAS  Google Scholar 

  • Beere HM (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001:re1.

    Google Scholar 

  • Bruce JL, Chen C, Xie Y, Zhong R, Wang YQ, Stevenson MA, Calderwood SK (1999) Activation of heat shock transcription factor 1 to a DNA binding form during the G(1)phase of the cell cycle. Cell Stress Chaperones 4:36–45.

    PubMed  CAS  Google Scholar 

  • Cahill CM, Lin HS, Price BD, Bruce JL, Calderwood SK (1997) Potential role of heat shock transcription factor in the expression of inflammatory cytokines. Adv Exp Med Biol 400B:625–630.

    PubMed  CAS  Google Scholar 

  • Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 271:24874–24879.

    PubMed  CAS  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522.

    Article  PubMed  CAS  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Cen H, Zheng S, Fang YM, Tang XP, Dong Q (2004) Induction of HSF1 expression is associated with sporadic colorectal cancer. World J Gastroenterol 10:3122–3126.

    PubMed  CAS  Google Scholar 

  • Chen C, Xie Y, Stevenson MA, Auron PE, Calderwood SK (1997) Heat shock factor 1 represses Ras-induced transcriptional activation of the c-fos gene. J Biol Chem 272:26803–26806.

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Gago FE, Fanelli MA, Calderwood SK (2006) Co-expression of steroid receptors (estrogen receptor alpha and/or progesterone receptors) and Her-2/neu: Clinical implications. J Steroid Biochem Mol Biol 102:32–40.

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018.

    Article  PubMed  CAS  Google Scholar 

  • Davis PK, Brackmann RK (2003) Chromatin remodeling and cancer. Cancer Biol Ther 2:22–29.

    PubMed  Google Scholar 

  • Eustace BK, Jay DG (2004) Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3:1098–1100.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18.

    PubMed  CAS  Google Scholar 

  • Green M, Schuetz TJ, Sullivan EK, Kingston RE (1995) A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15:3354–3362.

    PubMed  CAS  Google Scholar 

  • Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4.

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, Wu C, Roy-Burman P (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156:857–864.

    Article  PubMed  CAS  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810.

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS, Shin DY (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20:5818–5825.

    Article  PubMed  CAS  Google Scholar 

  • Karapanagiotou EM, Syrigos K, Saif MW (2009) Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin Investig Drugs 18(2):161–174.

    Article  PubMed  CAS  Google Scholar 

  • Khaleque MA, Bharti A, Gong J, Gray PJ, Sachdev V, Ciocca DR, Stati A, Fanelli M, Calderwood SK (2008) Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 27:1886–1893.

    Article  PubMed  CAS  Google Scholar 

  • Khaleque MA, Bharti A, Sawyer D, Gong J, Benjamin IJ, Stevenson MA, Calderwood SK (2005) Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24:6564–6573.

    PubMed  CAS  Google Scholar 

  • Kim SA, Yoon JH, Lee SH, Ahn SG (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280:12653–12657.

    Article  PubMed  CAS  Google Scholar 

  • Kubisch CH, Gukovsky I, Lugea A, Pandol SJ, Kuick R, Misek DE, Hanash SM, Logsdon CD (2006) Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury. Pancreas 33:68–76.

    Article  PubMed  CAS  Google Scholar 

  • Lambot MA, Peny MO, Fayt I, Haot J, Noel JC (2000) Overexpression of 27-kDa heat shock protein relates to poor histological differentiation in human oesophageal squamous cell carcinoma. Histopathology 36:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Lee HJ, Lee JS, Jeoung D, Kang CM, Bae S, Lee SJ, Kwon SH, Kang D, Lee YS (2008) A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene 27:2999–3009.

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275:10519–10526.

    Article  PubMed  CAS  Google Scholar 

  • Madden SL, Galella EA, Zhu J, Bertelsen AH, Beaudry GA (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15:1079–1085.

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2:422–432.

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528.

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Duchaine J, Massie B (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–5438.

    PubMed  CAS  Google Scholar 

  • Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DA, White E (2004) Exploiting different ways to die. Genes Dev 18:1223–1226.

    Article  PubMed  CAS  Google Scholar 

  • Newton EM, Knauf U, Green M, Kingston RE (1996) The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 16:839–846.

    PubMed  CAS  Google Scholar 

  • Nueda A, Hudson F, Mivechi NF, Dynan WS (1999) DNA-dependent protein kinase protects against heat-induced apoptosis. J Biol Chem 274:14988–14996.

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435.

    Article  PubMed  CAS  Google Scholar 

  • Orosz A, Wisniewski J, Wu C (1996) Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Mol Cell Biol 16:7018–7030.

    PubMed  CAS  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85.

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322.

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656.

    Article  PubMed  CAS  Google Scholar 

  • Pfosser A, Thalgott M, Buttner K, Brouet A, Feron O, Boekstegers P, Kupatt C (2005) Liposomal Hsp90 cDNA induces neovascularization via nitric oxide in chronic ischemia. Cardiovasc Res 65:728–736.

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666.

    Article  PubMed  CAS  Google Scholar 

  • Singh IS, He JR, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277:4981–4988.

    Article  PubMed  CAS  Google Scholar 

  • Singh IS, Viscardi RM, Kalvakolanu I, Calderwood S, Hasday JD (2000) Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J Biol Chem 275:9841–9848.

    Article  PubMed  CAS  Google Scholar 

  • Solimini NL, Luo J, Elledge SJ (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130:986–988.

    Article  PubMed  CAS  Google Scholar 

  • Soncin F, Zhang X, Chu B, Wang X, Asea A, Ann Stevenson M, Sacks DB, Calderwood SK (2003) Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochem Biophys Res Commun 303:700–706.

    Article  PubMed  CAS  Google Scholar 

  • Suh SK, Hood BL, Kim BJ, Conrads TP, Veenstra TD, Song BJ (2004) Identification of oxidized mitochondrial proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 4:3401–3412.

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Liao JK (2004) Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 24:2238–2244.

    Article  PubMed  CAS  Google Scholar 

  • Tchenio T, Havard M, Martinez LA, Dautry F (2006) Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 26:580–591.

    Article  PubMed  CAS  Google Scholar 

  • Teramoto R, Minagawa H, Honda M, Miyazaki K, Tabuse Y, Kamijo K, Ueda T, Kaneko S (2008) Protein expression profile characteristic to hepatocellular carcinoma revealed by 2D-DIGE with supervised learning. Biochim Biophys Acta 1784:764–772.

    PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910.

    Article  PubMed  CAS  Google Scholar 

  • Vogel A, van Den Berg IE, Al-Dhalimy M, Groopman J, Ou CN, Ryabinina O, Iordanov MS, Finegold M, Grompe M (2004) Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology 39:433–443.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Calderwood SK (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013–6026.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Khaleque MA, Zhao MJ, Zhong R, Gaestel M, Calderwood SK (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281:782–791.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Theriault JR, He H, Gong J, Calderwood SK (2004) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279:32651–32659.

    Article  PubMed  CAS  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827.

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772.

    Article  PubMed  CAS  Google Scholar 

  • Workman P (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10:47–51.

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593.

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952.

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002a). Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277:11802–11810.

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK (2002b). NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  • Yagui-Beltran A, Craig AL, Lawrie L, Thompson D, Pospisilova S, Johnston D, Kernohan N, Hopwood D, Dillon JF, Hupp TR (2001) The human oesophageal squamous epithelium exhibits a novel type of heat shock protein response. Eur J Biochem 268:5343–5355.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Schmid T, Frank R, Brune B (2004) PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. J Biol Chem 279:13506–13513.

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Rungger D, Voellmy R (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Orosz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Orosz, A. (2011). Alcohol, Altered Protein Homeostasis, and Cancer. In: Zakhari, S., Vasiliou, V., Guo, Q. (eds) Alcohol and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0040-0_8

Download citation

Publish with us

Policies and ethics