Skip to main content

Mechanisms of Oncogenesis by Avian and Murine Retroviruses

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Oncogenic retroviruses have made major contributions to cancer research since their discovery 100 years ago in chickens. Their close genetic interaction with hosts, due to the obligatory proviral integration into host genomes, has led to better understanding of mechanisms of nonviral oncogenesis as well. Some retroviruses, such as Rous sarcoma virus, have captured host genes and incorporated them into their genomes – a finding that led to the discovery of oncogenes and showed that cancer is a genetic disease. Comparisons of viral oncogenes and cellular protooncogenes revealed mutations and expression differences important for oncogenesis. Retroviruses lacking oncogenes, including avian leukosis virus and murine leukemia virus, can alter expression of host genes by insertional mutagenesis, supplying new transcriptional regulatory sequences. This discovery uncovered many new oncogenes and led to the first oncogenic microRNA, miR-155. Studies elucidating cooperativity between oncogenes have contributed to our understanding of cancer as a multistep process. A few types of retroviruses use viral structural or noncoding genes for oncogenesis. Others interact with endogenous retroviral sequences present in the host. Finally, since retroviruses are frequently used as gene therapy vectors, the potential role of the vectors in oncogenesis must be considered and weighed against the benefits of the intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG (2004) RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 32:D523–D527. doi:10.1093/nar/gkh013 (Database issue)

    Article  PubMed  CAS  Google Scholar 

  • Albritton LM, Tseng L, Scadden D, Cunningham JM (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57(4):659–666. doi:0092-8674(89)90134-7

    Article  PubMed  CAS  Google Scholar 

  • Alian A, Sela-Donenfeld D, Panet A, Eldor A (2000) Avian hemangioma retrovirus induces cell proliferation via the envelope (env) gene. Virology 276(1):161–168. doi:10.1006/viro.2000.0550

    Article  PubMed  CAS  Google Scholar 

  • Andersen PR, Barbacid M, Tronick SR, Clark HF, Aaronson SA (1979) Evolutionary relatedness of viper and primate endogenous retroviruses. Science 204(4390):318–321

    Article  PubMed  CAS  Google Scholar 

  • Andersson P, Goldfarb MP, Weinberg RA (1979) A defined subgenomic fragment of in vitro synthesized Moloney sarcoma virus DNA can induce cell transformation upon transfection. Cell 16(1):63–75. doi:0092-8674(79)90188-0

    Article  PubMed  CAS  Google Scholar 

  • Askew DS, Bartholomew C, Buchberg AM, Valentine MB, Jenkins NA, Copeland NG, Ihle JN (1991) His-1 and His-2: identification and chromosomal mapping of two commonly rearranged sites of viral integration in a myeloid leukemia. Oncogene 6(11):2041–2047

    PubMed  CAS  Google Scholar 

  • Ball JK, Diggelmann H, Dekaban GA, Grossi GF, Semmler R, Waight PA, Fletcher RF (1988) Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J Virol 62(8):2985–2993

    PubMed  CAS  Google Scholar 

  • Bartholomew C, Ihle JN (1991) Retroviral insertions 90 kilobases proximal to the Evi-1 myeloid transforming gene activate transcription from the normal promoter. Mol Cell Biol 11(4):1820–1828

    PubMed  CAS  Google Scholar 

  • Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M (2008) Pvt1-encoded microRNAs in oncogenesis. Retrovirology 5:4. doi:10.1186/1742-4690-5-4

    Article  PubMed  CAS  Google Scholar 

  • Beemon K, Hunter T (1978) Characterization of Rous sarcoma virus src gene products synthesized in vitro. J Virol 28(2):551–566

    PubMed  CAS  Google Scholar 

  • Begg AM (1927) A filterable endothelioma of the fowl. Lancet II 209:912–915

    Article  Google Scholar 

  • Ben-David Y, Prideaux VR, Chow V, Benchimol S, Bernstein A (1988) Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 3(2):179–185

    PubMed  CAS  Google Scholar 

  • Bergeron D, Houde J, Polquin L, Barbeau B, Rassart E (1993) Analysis of proviruses integrated in the Fli-1 and Evi-1 regions in Cas-Br-E MuLV-induced non-T, non B-cell leukemias. Virology 191:661–669

    Article  Google Scholar 

  • Berns A (1991) Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem 47(2):130–135. doi:10.1002/jcb.240470206

    Article  PubMed  CAS  Google Scholar 

  • Besmer P (1991) The kit ligand encoded at the murine Steel locus: a pleiotropic growth and differentiation factor. Curr Opin Cell Biol 3(6):939–946

    Article  PubMed  CAS  Google Scholar 

  • Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382(6594):826–829. doi:10.1038/382826a0

    Article  PubMed  CAS  Google Scholar 

  • Beug H, Graf T (1989) Co-operation between viral oncogenes in avian erythroid and myeloid leukaemia. Eur J Clin Invest 19(6):491–502

    Article  PubMed  CAS  Google Scholar 

  • Bittner JJ (1942) The milk-influence of breast tumors in mice. Science 95(2470):462–463. doi:10.1126/science.95.2470.462

    Article  PubMed  CAS  Google Scholar 

  • Bolisetty MT, Dy G, Tam W, Beemon KL (2009) Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol 83(23):12009–12017. doi:10.1128/JVI.01182-09

    Article  PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269(5626):346–348

    Article  PubMed  CAS  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3(11):848–858. doi:10.1038/nrmicro1263

    Article  PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467(7313):318–322. doi:10.1038/nature09328

    Article  PubMed  CAS  Google Scholar 

  • Chatis PA, Holland CA, Hartley JW, Rowe WP, Hopkins N (1983) Role for the 3′ end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses. Proc Natl Acad Sci USA 80(14):4408–4411

    Article  PubMed  CAS  Google Scholar 

  • Clurman BE, Hayward WS (1989) Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol Cell Biol 9(6):2657–2664

    PubMed  CAS  Google Scholar 

  • Cmarik J, Ruscetti S (2010) Friend spleen focus-forming virus activates the tyrosine kinase sf-Stk and the transcription factor PU.1 to cause a multi-stage erythroleukemia in mice. Viruses 2:2235–2257

    Article  PubMed  CAS  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103(18):7024–7029. doi:10.1073/pnas.0602266103

    Article  PubMed  CAS  Google Scholar 

  • Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N, Wang GJ, Ben-David Y (2007) Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 110(7):2631–2640. doi:10.1182/blood-2006-10-053850

    Article  PubMed  CAS  Google Scholar 

  • Dabrowska MJ, Dybkaer K, Johnsen HE, Wang B, Wabl M, Pedersen FS (2009) Loss of MicroRNA targets in the 3′ untranslated region as a mechanism of retroviral insertional activation of growth factor independence 1. J Virol 83(16):8051–8061. doi:10.1128/JVI.00427-09

    Article  PubMed  CAS  Google Scholar 

  • Dave UP, Akagi K, Tripathi R, Cleveland SM, Thompson MA, Yi M, Stephens R, Downing JR, Jenkins NA, Copeland NG (2009) Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet 5(5):e1000491. doi:10.1371/journal.pgen.1000491

    Article  PubMed  CAS  Google Scholar 

  • de Ridder J, Uren A, Kool J, Reinders M, Wessels L (2006) Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2(12):e166. doi:10.1371/journal.pcbi.0020166

    Article  PubMed  CAS  Google Scholar 

  • Dickson C, Smith R, Brookes S, Peters G (1984) Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37(2):529–536. doi:0092-8674(84)90383-0

    Article  PubMed  CAS  Google Scholar 

  • Duesberg PH, Vogt PK (1970) Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc Natl Acad Sci USA 67(4):1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Dunbar CE, Crosier PS, Nienhuis AW (1991) Introduction of an activated RAS oncogene into murine bone marrow lymphoid progenitors via retroviral gene transfer results in thymic lymphomas. Oncogene Res 6(1):39–51

    PubMed  CAS  Google Scholar 

  • Ellerman V, Bang O (1908) Experimentelle leukamie bei huhnren. Zentralblatt Bakt, Parisite Infekt Hygiene 46:595–609

    Google Scholar 

  • Engelbreth-Holm J, Rothe-Meyer A (1935) On the connection between erythroblastosis (haemocytoblastosis), myelosis, and sarcoma in the chicken. Acta Pathol Microbiol Scand 12:352–365

    Article  Google Scholar 

  • Ferro FE Jr, Kozak SL, Hoatlin ME, Kabat D (1993) Cell surface site for mitogenic interaction of erythropoietin receptors with the membrane glycoprotein encoded by Friend erythroleukemia virus. J Biol Chem 268(8):5741–5747

    PubMed  CAS  Google Scholar 

  • Fichelson S, Vigon I, Dusanter I, Charon M, Velu T, Baillou C, Gisselbrecht S, Lemoine FM (1995) In vitro transformation of murine pro-B and pre-B cells by v-mpl, a truncated form of a cytokine receptor. J Immunol 154(4):1577–1586

    PubMed  CAS  Google Scholar 

  • Fletcher O, Houlston RS (2010) Architecture of inherited susceptibility to common cancer. Nat Rev Cancer 10(5):353–361. doi:10.1038/nrc2840

    Article  PubMed  CAS  Google Scholar 

  • Forrest D, Onions D, Lees G, Neil JC (1987) Altered structure and expression of c-myc in feline T-cell tumours. Virology 158(1):194–205

    Article  PubMed  CAS  Google Scholar 

  • Fuerstenberg S, Leitner I, Schroeder C, Schwarz H, Vennstrom B, Beug H (1992) Transcriptional repression of band 3 and CAII in v-erbA transformed erythroblasts accounts for an important part of the leukaemic phenotype. EMBO J 11(9):3355–3365

    PubMed  CAS  Google Scholar 

  • Fung YK, Crittenden LB, Kung HJ (1982) Orientation and position of avian leukosis virus DNA relative to the cellular oncogene c-myc in B-lymphoma tumors of highly susceptible 15I5 X 7(2) chickens. J Virol 44(2):742–746

    PubMed  CAS  Google Scholar 

  • Fung YK, Shackleford GM, Brown AM, Sanders GS, Varmus HE (1985) Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene. Mol Cell Biol 5(12):3337–3344

    PubMed  CAS  Google Scholar 

  • Gilks CB, Bear SE, Grimes HL, Tsichlis PN (1993) Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol 13(3):1759–1768

    PubMed  CAS  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT, Chaix A, Fazli L, Motoo Y, Wang Q, Rocchi P, Russo A, Gleave M, Dagorn JC, Iovanna JL, Carrier A, Pebusque MJ, Dusetti NJ (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104(41):16170–16175. doi:10.1073/pnas.0703942104

    Article  PubMed  CAS  Google Scholar 

  • Goodenow MM, Hayward WS (1987) 5′ long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J Virol 61(8):2489–2498

    PubMed  CAS  Google Scholar 

  • Green PL, Kaehler DA, Risser R (1987) Cell transformation and tumor induction by Abelson murine leukemia virus in the absence of helper virus. Proc Natl Acad Sci USA 84:5932–5936

    Article  PubMed  CAS  Google Scholar 

  • Gross L (1951a) Pathogenic properties, and “vertical” transmission of the mouse leukemia agent. Proc Soc Exp Biol Med 78(1):342–348

    PubMed  CAS  Google Scholar 

  • Gross L (1951b) “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embryos. Proc Soc Exp Biol Med 76(1):27–32

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–3142. doi:10.1172/JCI35700

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346(16):1185–1193. doi:10.1056/NEJMoa012616

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419. doi:10.1126/science.1088547

    Article  PubMed  CAS  Google Scholar 

  • Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF (2000) The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol 74(9):4264–4272

    Article  PubMed  CAS  Google Scholar 

  • Hanlon L, Barr NI, Blyth K, Stewart M, Haviernik P, Wolff L, Weston K, Cameron ER, Neil JC (2003) Long-range effects of retroviral insertion on c-myb: overexpression may be obscured by silencing during tumor growth in vitro. J Virol 77(2):1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Hartl M, Karagiannidis AI, Bister K (2006) Cooperative cell transformation by Myc/Mil(Raf) involves induction of AP-1 and activation of genes implicated in cell motility and metastasis. Oncogene 25(29):4043–4055. doi:10.1038/sj.onc.1209441

    Article  PubMed  CAS  Google Scholar 

  • Hartley JW, Wolford NK, Old LJ, Rowe WP (1977) A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc Natl Acad Sci USA 74(2):789–792

    Article  PubMed  CAS  Google Scholar 

  • Hayman MJ, Beug H (1992) Avian erythroblastosis: a model system to study oncogene co-operation in leukemia. Cancer Surv 15:53–68

    PubMed  CAS  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290(5806):475–480

    Article  PubMed  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  • Herman SA, Coffin JM (1986) Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. J Virol 60(2):497–505

    PubMed  CAS  Google Scholar 

  • Hihara H, Yamamoto H, Shimohira H, Arai K, Shimizu T (1983) Avian erythroblastosis virus isolated from chick erythroblastosis induced by lymphatic leukemia virus subgroup A. J Natl Cancer Inst 70(5):891–897

    PubMed  CAS  Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150. doi:10.1172/JCI35798

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Ivanov X, Mladenov Z, Nedyalkov S, Todorov TG (1962) Experimental investigations into avian leucoses. I. Transmission experiments of certain diseases of the avian leukosis complex, found in Bulgaria. Bull Inst Path Comp Anim Acad Bulg Sci 9:5–36

    Google Scholar 

  • Iwama A, Okano K, Sudo T, Matsuda Y, Suda T (1994) Molecular cloning of a novel receptor tyrosine kinase gene, STK, derived from enriched hematopoietic stem cells. Blood 83(11):3160–3169

    PubMed  CAS  Google Scholar 

  • Jern P, Coffin JM (2008) Effects of retroviruses on host genome function. Annu Rev Genet 42:709–732. doi:10.1146/annurev.genet.42.110807.091501

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Kanter MR, Dunkel I, Ramsay RG, Beemon KL, Hayward WS (1997) Minimal truncation of the c-myb gene product in rapid-onset B-cell lymphoma. J Virol 71(9):6526–6533

    PubMed  CAS  Google Scholar 

  • Jung J, Kim TG, Lyons GE, Kim HR, Lee Y (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 280(35):30916–30923. doi:10.1074/jbc.M414482200

    Article  PubMed  CAS  Google Scholar 

  • Kabat D (1989) Molecular biology of Friend viral erythroleukemia. Curr Top Microbiol Immunol 148:1–42

    Article  PubMed  CAS  Google Scholar 

  • Kanter MR, Smith RE, Hayward WS (1988) Rapid induction of B-cell lymphomas: insertional activation of c-myb by avian leukosis virus. J Virol 62(4):1423–1432

    PubMed  CAS  Google Scholar 

  • Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25(46):6188–6196. doi:10.1038/sj.onc.1209913

    Article  PubMed  CAS  Google Scholar 

  • Klein G (1983) Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32(2):311–315. doi:0092-8674(83)90449-X

    Article  PubMed  CAS  Google Scholar 

  • Kool J, Uren AG, Martins CP, Sie D, de Ridder J, Turner G, van Uitert M, Matentzoglu K, Lagcher W, Krimpenfort P, Gadiot J, Pritchard C, Lenz J, Lund AH, Jonkers J, Rogers J, Adams DJ, Wessels L, Berns A, van Lohuizen M (2010) Insertional mutagenesis in mice deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1 reveals cancer gene interactions and correlations with tumor phenotypes. Cancer Res 70(2):520–531. doi:10.1158/0008-5472.CAN-09-2736

    Article  PubMed  CAS  Google Scholar 

  • Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67(12):5699–5707. doi:10.1158/0008-5472.CAN-06-4478

    Article  PubMed  CAS  Google Scholar 

  • Lander JK, Fan H (1997) Low-frequency loss of heterozygosity in Moloney murine leukemia virus-induced tumors in BRAKF1/J mice. J Virol 71:3940–3952

    PubMed  CAS  Google Scholar 

  • Largaespada DA, Shaughnessy JD Jr, Jenkins NA, Copeland NG (1995) Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady-state Ras-GTP levels. J Virol 69(8):5095–5102

    PubMed  CAS  Google Scholar 

  • Lazo PA, Lee JS, Tsichlis PN (1990) Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc Natl Acad Sci USA 87(1):170–173

    Article  PubMed  CAS  Google Scholar 

  • Lenz J, Celander D, Crowther RL, Patarca R, Perkins DW, Haseltine WA (1984) Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308(5958):467–470

    Article  PubMed  CAS  Google Scholar 

  • Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2(6):e60. doi:10.1371/journal.ppat.0020060

    Article  PubMed  CAS  Google Scholar 

  • Lilly F, Duran-Reynals ML, Rowe WP (1975) Correlation of early murine leukemia virus titer and H-2 type with spontaneous leukemia in mice of the BALB/c times AKR cross: a genetic analysis. J Exp Med 141(4):882–889

    PubMed  CAS  Google Scholar 

  • Linial ML, Fan H, Hahn B, Löwer R, Neil J, Quackenbush S, Rethwilm A, Sonigo P, Stoye J, Tristem M (2005) Retroviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier, San Diego, pp 421–440

    Google Scholar 

  • Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular MicroRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84(22):11670–11678. doi:10.1128/JVI.01248-10

    Article  PubMed  CAS  Google Scholar 

  • Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, Russell R, DePinho RA, Lenz J, van Lohuizen M (2002) Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32(1):160–165. doi:10.1038/ng956. ng956

    Google Scholar 

  • Martin GS (2001) The hunting of the Src. Nat Rev Mol Cell Biol 2(6):467–475. doi:10.1038/35073094. 35073094

    Google Scholar 

  • Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684. doi:10.1016/j.cell.2009.06.016

    Article  PubMed  CAS  Google Scholar 

  • McNally MT, Gontarek RR, Beemon K (1991) Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185(1):99–108. doi:0042-6822(91)90758-4

    Article  PubMed  CAS  Google Scholar 

  • Metz T (1994) Oncogenes and erythroid differentiation. Semin Cancer Biol 5(2):125–135

    PubMed  CAS  Google Scholar 

  • Metz T, Graf T (1991) v-myb and v-ets transform chicken erythroid cells and cooperate both in trans and in cis to induce distinct differentiation phenotypes. Genes Dev 5(3):369–380

    Article  PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di Serio C, von Kalle C, Naldini L (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975. doi:10.1172/JCI37630

    Article  PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, Naldini L (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24(6):687–696. doi:10.1038/nbt1216

    Article  PubMed  CAS  Google Scholar 

  • Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ, Burnside J (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82(24):12213–12220. doi:10.1128/JVI.01722-08

    Article  PubMed  CAS  Google Scholar 

  • Moroy T, Verbeek S, Ma A, Achacoso P, Berns A, Alt F (1991) E mu N- and E mu L-myc cooperate with E mu pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice. Oncogene 6(11):1941–1948

    PubMed  CAS  Google Scholar 

  • Morrison HL, Soni B, Lenz J (1995) Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 69(1):446–455

    PubMed  CAS  Google Scholar 

  • Nam CH, Rabbitts TH (2006) The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 13(1):15–25. doi:10.1016/j.ymthe.2005.09.010

    Article  PubMed  CAS  Google Scholar 

  • Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23(2):323–334. doi:0092-8674(81)90128-8

    Article  PubMed  CAS  Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372(6501):103–107. doi:10.1038/372103a0

    Article  PubMed  CAS  Google Scholar 

  • Neil JC, Hughes D, McFarlane R, Wilkie NM, Onions DE, Lees G, Jarrett O (1984) Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature 308(5962):814–820

    Article  PubMed  CAS  Google Scholar 

  • Neil JC, Stewart MA (2011) Retroviruses as tools to identify oncogenes and tumor suppressor genes. In: Dudley JP (ed) Retroviruses and insights into cancer. Springer, New York, pp 285–306

    Google Scholar 

  • Nilsen TW, Maroney PA, Goodwin RG, Rottman FM, Crittenden LB, Raines MA, Kung HJ (1985) c-erbB activation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell 41(3):719–726. doi:S0092-8674(85)80052-0

    Article  PubMed  CAS  Google Scholar 

  • Nishigaki K, Thompson D, Hanson C, Yugawa T, Ruscetti S (2001) The envelope glycoprotein of friend spleen focus-forming virus covalently interacts with and constitutively activates a truncated form of the receptor tyrosine kinase Stk. J Virol 75(17):7893–7903

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104(5):1604–1609. doi:10.1073/pnas.0610731104

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan CT, Polony TS, Paca RE, Beemon KL (2002) Rous sarcoma virus negative regulator of splicing selectively suppresses SRC mRNA splicing and promotes polyadenylation. Virology 302(2):405–412. doi:S0042682202916168

    Article  PubMed  CAS  Google Scholar 

  • Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Luthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4):401–409. doi:10.1038/nm1393

    Article  PubMed  CAS  Google Scholar 

  • Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295(5846):209–214

    Article  PubMed  CAS  Google Scholar 

  • Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE (1981) Analysis of avian leukosis virus DNA and RNA in bursal tumours: viral gene expression is not required for maintenance of the tumor state. Cell 23(2):311–322. doi:0092-8674(81)90127-6

    Article  PubMed  CAS  Google Scholar 

  • Persons DA, Paulson RF, Loyd MR, Herley MT, Bodner SM, Bernstein A, Correll PH, Ney PA (1999) Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nat Genet 23(2):159–165. doi:10.1038/13787

    Article  PubMed  CAS  Google Scholar 

  • Pizer E, Humphries EH (1989) RAV-1 insertional mutagenesis: disruption of the c-myb locus and development of avian B-cell lymphomas. J Virol 63(4):1630–1640

    PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77(12):7415–7419

    Article  PubMed  CAS  Google Scholar 

  • Polony TS, Bowers SJ, Neiman PE, Beemon KL (2003) Silent point mutation in an avian retrovirus RNA processing element promotes c-myb-associated short-latency lymphomas. J Virol 77(17):9378–9387

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg N, Jolicoeur P (1997) Retrovirus pathogenesis. In: Coffin JM, Hughes SE, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 475–586

    Google Scholar 

  • Ross SR (2009) Are viruses inhibited by APOBEC3 molecules from their host species? PLoS Pathog 5(4):e1000347. doi:10.1371/journal.ppat.1000347

    Article  PubMed  CAS  Google Scholar 

  • Rous P (1910) A transmissible avian neoplasm (sarcoma of the common fowl). J Exp Med 12:696–705

    Article  PubMed  CAS  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647. doi:10.1126/science.1155390

    Article  PubMed  CAS  Google Scholar 

  • Santilli G, Thornhill SI, Kinnon C, Thrasher AJ (2008) Gene therapy of inherited immunodeficiencies. Expert Opin Biol Ther 8(4):397–407. doi:10.1517/14712598.8.4.397

    Article  PubMed  CAS  Google Scholar 

  • Selten G, Cuypers HT, Berns A (1985) Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4(7):1793–1798

    PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791. doi:10.1016/S0959-8049(97)00062-2

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112. doi:S1535610802001022

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Steffen DL (1993) Frequent activation of the lck gene by promoter insertion and aberrant splicing in murine leukemia virus-induced rat lymphomas. Oncogene 8(1):141–149

    PubMed  CAS  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81(23):12836–12845. doi:10.1128/JVI.01804-07

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, Smith RE, Dunkel I, Hou V, Beemon KL, Hayward WS (1997) Genetic determinant of rapid-onset B-cell lymphoma by avian leukosis virus. J Virol 71(9):6534–6540

    PubMed  CAS  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–173

    Article  PubMed  CAS  Google Scholar 

  • Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Kramer A, Schwable J, Glimm H, Koehl U, Preiss C, Ball C, Martin H, Gohring G, Schwarzwaelder K, Hofmann WK, Karakaya K, Tchatchou S, Yang R, Reinecke P, Kuhlcke K, Schlegelberger B, Thrasher AJ, Hoelzer D, Seger R, von Kalle C, Grez M (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16(2):198–204. doi:10.1038/nm.2088

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Mackay N, Hanlon L, Blyth K, Scobie L, Cameron E, Neil JC (2007) Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res 67(11):5126–5133. doi:10.1158/0008-5472.CAN-07-0433

    Article  PubMed  CAS  Google Scholar 

  • Stocking C, Kozak CA (2008) Murine endogenous retroviruses. Cell Mol Life Sci 65(21):3383–3398. doi:10.1007/s00018-008-8497-0

    Article  PubMed  CAS  Google Scholar 

  • Stoye JP, Moroni C, Coffin JM (1991) Virological events leading to spontaneous AKR thymomas. J Virol 65(3):1273–1285

    PubMed  CAS  Google Scholar 

  • Swain A, Coffin JM (1992) Mechanism of transduction by retroviruses. Science 255(5046):841–845

    Article  PubMed  CAS  Google Scholar 

  • Tam W, Ben-Yehuda D, Hayward WS (1997) bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17(3):1490–1502

    PubMed  CAS  Google Scholar 

  • Tam W, Hughes SH, Hayward WS, Besmer P (2002) Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76(9):4275–4286

    Article  PubMed  CAS  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79(24):7837–7841

    Article  PubMed  CAS  Google Scholar 

  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science 316(5824):604–608. doi:10.1126/science.1141229

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M, Lagcher W, Sie D, Tanger E, Cox T, Reinders M, Hubbard TJ, Rogers J, Jonkers J, Wessels L, Adams DJ, van Lohuizen M, Berns A (2008) Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133(4):727–741. doi:10.1016/j.cell.2008.03.021

    Article  PubMed  CAS  Google Scholar 

  • van Lohuizen M, Frasch M, Wientjens E, Berns A (1991) Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 353(6342):353–355. doi:10.1038/353353a0

    Article  PubMed  Google Scholar 

  • Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M (2006) Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci USA 103(49):18680–18684. doi:10.1073/pnas.0609030103

    Article  PubMed  CAS  Google Scholar 

  • Wang LH, Duesberg P, Beemon K, Vogt PK (1975) Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end. J Virol 16(4):1051–1070

    PubMed  CAS  Google Scholar 

  • Wang Y, Kayman SC, Li JP, Pinter A (1993) Erythropoietin receptor (EpoR)-dependent mitogenicity of spleen focus-forming virus correlates with viral pathogenicity and processing of env protein but not with formation of gp52-EpoR complexes in the endoplasmic reticulum. J Virol 67(3):1322–1327

    PubMed  CAS  Google Scholar 

  • Yang F, Xian RR, Li Y, Polony TS, Beemon KL (2007) Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proc Natl Acad Sci USA 104(48):18952–18957. doi:10.1073/pnas.0709173104

    Article  PubMed  CAS  Google Scholar 

  • Yin Q, McBride J, Fewell C, Lacey M, Wang X, Lin Z, Cameron J, Flemington EK (2008) MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J Virol 82(11):5295–5306. doi:10.1128/JVI.02380-07

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of Mohan Bolisetty and Sarah Short with the preparation of the manuscript.

KLB was supported by NIH grants R01CA048746-20 and R01CA124596-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Beemon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beemon, K., Rosenberg, N. (2012). Mechanisms of Oncogenesis by Avian and Murine Retroviruses. In: Robertson, E. (eds) Cancer Associated Viruses. Current Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0016-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0016-5_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9999-3

  • Online ISBN: 978-1-4614-0016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics