Human Papillomaviruses and Cancer

Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Human papillomaviruses (HPVs) have evolved an intricate network of interactions with their keratinocyte host cells in order to infect, remain latent, and productively replicate in an orderly fashion. Distinct phases of the HPV life cycle take place in geographically distinct areas within the epidermis and are in turn influenced by the cellular differentiation status. Carcinogenesis resulting from HPV infection is relatively rare, and usually incompatible with the natural viral life cycle. In this review, we summarize the current knowledge on HPV genome status and functions of viral replication proteins and viral oncogenes. We describe in detail the reprogramming of specific host cell factors, which can affect the replicative or transforming potential of HPV. Molecular events that drive stepwise malignant transformation are included, with a particular emphasis on the role of DNA damage and genome instability that were more recently identified. Persistent HPV infection is known to be almost universally associated with cervical malignancies, but has now been clearly implicated in the etiology of a subset of head and neck cancers (HNCs). Emerging commonalities and possible differences between HPV-associated cervical versus HNCs are outlined toward the end of this review.

Keywords

Toxicity Anemia Serine Dermatitis Parkin 

References

  1. Abbate EA, Voitenleitner C, Botchan MR (2006) Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell 24:877–889PubMedCrossRefGoogle Scholar
  2. Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, DiPaolo JA (1998) Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci USA 95:1189–1194PubMedCrossRefGoogle Scholar
  3. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363(1):24–35PubMedCrossRefGoogle Scholar
  4. Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM (1987) Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61:962–971PubMedGoogle Scholar
  5. Banerjee NS, Genovese NJ, Noya F, Chien WM, Broker TR, Chow LT (2006) Conditionally activated E7 proteins of high-risk and low-risk human papillomaviruses induce S phase in postmitotic, differentiated human keratinocytes. J Virol 80:6517–6524PubMedCrossRefGoogle Scholar
  6. Bastien N, McBride AA (2000) Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology 270:124–134PubMedCrossRefGoogle Scholar
  7. Baxter MK, McPhillips MG, Ozato K, McBride AA (2005) The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4. J Virol 79:4806–4818PubMedCrossRefGoogle Scholar
  8. Bechtold V, Beard P, Raj K (2003) Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol 77:2021–2028PubMedCrossRefGoogle Scholar
  9. Bouvard V, Storey A, Pim D, Banks L (1994) Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J 13:5451–5459PubMedGoogle Scholar
  10. Braakhuis BJ, Snijders PJ, Keune WJ, Meijer CJ, Ruijter-Schippers HJ, Leemans CR, Brakenhoff RH (2004) Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst 96:998–1006PubMedCrossRefGoogle Scholar
  11. Brannon AR, Maresca JA, Boeke JD, Basrai MA, McBride AA (2005) Reconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein. Proc Natl Acad Sci USA 102:2998–3003PubMedCrossRefGoogle Scholar
  12. Bryan JT, Brown DR (2000) Association of the human papillomavirus type 11 E1()E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology 277:262–269PubMedCrossRefGoogle Scholar
  13. Capone RB, Pai SI, Koch WM, Gillison ML, Danish HN, Westra WH, Daniel R, Shah KV, Sidransky D (2000) Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res 6:4171–4175PubMedGoogle Scholar
  14. Cardenas-Mora J, Spindler JE, Jang MK, McBride AA (2008) Dimerization of the papillomavirus E2 protein is required for efficient mitotic chromosome association and Brd4 binding. J Virol 82:7298–7305PubMedCrossRefGoogle Scholar
  15. Chen B, Simpson DA, Zhou Y, Mitra A, Mitchell DL, Cordeiro-Stone M, Kaufmann WK (2009) Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 8:1775–1787PubMedCrossRefGoogle Scholar
  16. Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 9:2335–2349PubMedCrossRefGoogle Scholar
  17. Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS (1999) Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem 274:2696–2705PubMedCrossRefGoogle Scholar
  18. Corden SA, Sant-Cassia LJ, Easton AJ, Morris AG (1999) The integration of HPV-18 DNA in cervical carcinoma. Mol Pathol 52:275–282PubMedCrossRefGoogle Scholar
  19. Corry J, Peters LJ, Rischin D (2010) Optimising the therapeutic ratio in head and neck cancer. Lancet Oncol 11:287–291PubMedCrossRefGoogle Scholar
  20. Crusius K, Rodriguez I, Alonso A (2000) The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes 20:65–69PubMedCrossRefGoogle Scholar
  21. D’Souza G, Fakhry C, Sugar EA, Seaberg EC, Weber K, Minkoff HL, Anastos K, Palefsky JM, Gillison ML (2007a) Six-month natural history of oral versus cervical human papillomavirus infection. Int J Cancer 121:2897–2904Google Scholar
  22. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML (2007b) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356:1944–1956PubMedCrossRefGoogle Scholar
  23. D’Souza G, Agrawal Y, Halpern J, Bodison S, Gillison ML (2009) Oral sexual behaviors associated with prevalent oral human papillomavirus infection. J Infect Dis 199:1263–1269PubMedCrossRefGoogle Scholar
  24. Dai M, Clifford GM, le Calvez F, Castellsague X, Snijders PJ, Pawlita M, Herrero R, Hainaut P, Franceschi S (2004) Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. Cancer Res 64:468–471PubMedCrossRefGoogle Scholar
  25. Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JB, Doorbar J (2002) Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol 76:9806–9818PubMedCrossRefGoogle Scholar
  26. Dell G, Wilkinson KW, Tranter R, Parish J, Leo Brady R, Gaston K (2003) Comparison of the structure and DNA-binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus. J Mol Biol 334:979–991PubMedCrossRefGoogle Scholar
  27. Demeret C, Yaniv M, Thierry F (1994) The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. J Virol 68:7075–7082PubMedGoogle Scholar
  28. Demeret C, Desaintes C, Yaniv M, Thierry F (1997) Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J Virol 71:9343–9349PubMedGoogle Scholar
  29. Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S, Lippincott-Schwartz J, Ozato K (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 20:6537–6549PubMedCrossRefGoogle Scholar
  30. Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 100:8758–8763PubMedCrossRefGoogle Scholar
  31. DiMaio D, Mattoon D (2001) Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20:7866–7873PubMedCrossRefGoogle Scholar
  32. DiPaolo JA, Woodworth CD, Popescu NC, Notario V, Doniger J (1989) Induction of human cervical squamous cell carcinoma by sequential transfection with human papillomavirus 16 DNA and viral Harvey ras. Oncogene 4:395–399PubMedGoogle Scholar
  33. Disbrow GL, Hanover JA, Schlegel R (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 79:5839–5846PubMedCrossRefGoogle Scholar
  34. Donaldson MM, Boner W, Morgan IM (2007) TopBP1 regulates human papillomavirus type 16 E2 interaction with chromatin. J Virol 81:4338–4342PubMedCrossRefGoogle Scholar
  35. Dong G, Broker TR, Chow LT (1994) Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J Virol 68:1115–1127PubMedGoogle Scholar
  36. Doorbar J (2005) The papillomavirus life cycle. J Clin Virol 32(Suppl 1):S7–S15PubMedCrossRefGoogle Scholar
  37. Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110:525–541CrossRefGoogle Scholar
  38. Doorbar J, Ely S, Sterling J, McLean C, Crawford L (1991) Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827PubMedCrossRefGoogle Scholar
  39. Dostatni N, Lambert PF, Sousa R, Ham J, Howley PM, Yaniv M (1991) The functional BPV-1 E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex. Genes Dev 5:1657–1671PubMedCrossRefGoogle Scholar
  40. Dowhanick JJ, McBride AA, Howley PM (1995) Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol 69:7791–7799PubMedGoogle Scholar
  41. Duensing A, Duensing S (2008) Centrosome-mediated chromosomal instability and steroid hormones as co factors in human papillomavirus-associated cervical carcinogenesis: small viruses help to answer big questions. Adv Exp Med Biol 617:109–117PubMedCrossRefGoogle Scholar
  42. Duensing S, Munger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–7082PubMedGoogle Scholar
  43. Duensing S, Munger K (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol 77:12331–12335PubMedCrossRefGoogle Scholar
  44. Duensing S, Munger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109:157–162PubMedCrossRefGoogle Scholar
  45. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97:10002–10007PubMedCrossRefGoogle Scholar
  46. Duensing S, Duensing A, Crum CP, Munger K (2001a) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61:2356–2360PubMedGoogle Scholar
  47. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K (2001b) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol 75:7712–7716PubMedCrossRefGoogle Scholar
  48. Duensing A, Chin A, Wang L, Kuan SF, Duensing S (2008) Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms. Virology 372:157–164PubMedCrossRefGoogle Scholar
  49. Durst M, Kleinheinz A, Hotz M, Gissmann L (1985) The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 66:1515–1522PubMedCrossRefGoogle Scholar
  50. Durst M, Gallahan D, Jay G, Rhim JS (1989) Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173:767–771PubMedCrossRefGoogle Scholar
  51. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937PubMedCrossRefGoogle Scholar
  52. Fehrmann F, Klumpp DJ, Laimins LA (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 77:2819–2831PubMedCrossRefGoogle Scholar
  53. Fischer CA, Zlobec I, Green E, Probst S, Storck C, Lugli A, Tornillo L, Wolfensberger M, Terracciano LM (2010) Is the improved prognosis of p16 positive oropharyngeal squamous cell carcinoma dependent of the treatment modality? Int J Cancer 126:1256–1262PubMedGoogle Scholar
  54. Flores ER, Lambert PF (1997) Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol 71:7167–7179PubMedGoogle Scholar
  55. Francis DA, Schmid SI, Howley PM (2000) Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 74:2679–2686PubMedCrossRefGoogle Scholar
  56. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11:2090–2100PubMedCrossRefGoogle Scholar
  57. Galloway DA, Gewin LC, Myers H, Luo W, Grandori C, Katzenellenbogen RA, McDougall JK (2005) Regulation of telomerase by human papillomaviruses. Cold Spring Harb Symp Quant Biol 70:209–215PubMedCrossRefGoogle Scholar
  58. Genther SM, Sterling S, Duensing S, Munger K, Sattler C, Lambert PF (2003) Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 77:2832–2842PubMedCrossRefGoogle Scholar
  59. Gillison ML, Shah KV (2001) Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 13:183–188PubMedCrossRefGoogle Scholar
  60. Gillison ML, Shah KV (2003) Chapter 9: role of mucosal human papillomavirus in nongenital cancers. J Natl Cancer Inst Monogr 31:57–65PubMedCrossRefGoogle Scholar
  61. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE, Shah KV, Sidransky D (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720PubMedCrossRefGoogle Scholar
  62. Giuliani L, Favalli C, Syrjanen K, Ciotti M (2007) Human papillomavirus infections in lung cancer. Detection of E6 and E7 transcripts and review of the literature. Anticancer Res 27:2697–2704PubMedGoogle Scholar
  63. Gonzalez SL, Stremlau M, He X, Basile JR, Munger K (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 75:7583–7591PubMedCrossRefGoogle Scholar
  64. Goodwin EC, DiMaio D (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97:12513–12518PubMedCrossRefGoogle Scholar
  65. Guo M, Sneige N, Silva EG, Jan YJ, Cogdell DE, Lin E, Luthra R, Zhang W (2007) Distribution and viral load of eight oncogenic types of human papillomavirus (HPV) and HPV 16 integration status in cervical intraepithelial neoplasia and carcinoma. Mod Pathol 20:256–266PubMedCrossRefGoogle Scholar
  66. Hall AH, Alexander KA (2003) RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77:6066–6069PubMedCrossRefGoogle Scholar
  67. Han Y, Loo YM, Militello KT, Melendy T (1999) Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A. J Virol 73:4899–4907PubMedGoogle Scholar
  68. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  69. Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97PubMedCrossRefGoogle Scholar
  70. Heilman SA, Nordberg JJ, Liu Y, Sluder G, Chen JJ (2009) Abrogation of the postmitotic checkpoint contributes to polyploidization in human papillomavirus E7-expressing cells. J Virol 83:2756–2764PubMedCrossRefGoogle Scholar
  71. Herrero R, Castellsague X, Pawlita M, Lissowska J, Kee F, Balaram P, Rajkumar T, Sridhar H, Rose B, Pintos J, Fernandez L, Idris A, Sanchez MJ, Nieto A, Talamini R, Tavani A, Bosch FX, Reidel U, Snijders PJ, Meijer CJ, Viscidi R, Munoz N, Franceschi S (2003) Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 95:1772–1783PubMedCrossRefGoogle Scholar
  72. Hines CS, Meghoo C, Shetty S, Biburger M, Brenowitz M, Hegde RS (1998) DNA structure and flexibility in the sequence-specific binding of papillomavirus E2 proteins. J Mol Biol 276:809–818PubMedCrossRefGoogle Scholar
  73. Hoskins EE, Gunawardena RW, Habash KB, Wise-Draper TM, Jansen M, Knudsen ES, Wells SI (2008) Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene 27(35):4798–4808PubMedCrossRefGoogle Scholar
  74. Howley PM, Lowy DR (2001) Papillomaviruses and their replication. In: Knipe DM, Howley PM (eds) Filelds virology, vol 2, 4th edn. Lippincott Williams & Wilkins, Philadelphia, p 2197Google Scholar
  75. Hu G, Liu W, Hanania EG, Fu S, Wang T, Deisseroth AB (1995) Suppression of tumorigenesis by transcription units expressing the antisense E6 and E7 messenger RNA (mRNA) for the transforming proteins of the human papilloma virus and the sense mRNA for the retinoblastoma gene in cervical carcinoma cells. Cancer Gene Ther 2:19–32PubMedGoogle Scholar
  76. Hudelist G, Manavi M, Pischinger KI, Watkins-Riedel T, Singer CF, Kubista E, Czerwenka KF (2004) Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecol Oncol 92:873–880PubMedCrossRefGoogle Scholar
  77. Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10:4129–4135PubMedGoogle Scholar
  78. Hummel M, Hudson JB, Laimins LA (1992) Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol 66:6070–6080PubMedGoogle Scholar
  79. Hurlin PJ, Kaur P, Smith PP, Perez-Reyes N, Blanton RA, McDougall JK (1991) Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci USA 88:570–574PubMedCrossRefGoogle Scholar
  80. Hwang ES, Riese DJ 2nd, Settleman J, Nilson LA, Honig J, Flynn S, DiMaio D (1993) Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J Virol 67:3720–3729PubMedGoogle Scholar
  81. Hwang ES, Nottoli T, Dimaio D (1995) The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211:227–233PubMedCrossRefGoogle Scholar
  82. Ilves I, Kivi S, Ustav M (1999) Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which is mediated by the viral E2 protein and its binding sites. J Virol 73:4404–4412PubMedGoogle Scholar
  83. Ilves I, Maemets K, Silla T, Janikson K, Ustav M (2006) Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 80:3660–3665PubMedCrossRefGoogle Scholar
  84. Jabbar SF, Abrams L, Glick A, Lambert PF (2009) Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 69:4407–4414PubMedCrossRefGoogle Scholar
  85. Jeon S, Lambert PF (1995a) Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci USA 92:1654–1658PubMedCrossRefGoogle Scholar
  86. Jeon S, Lambert PF (1995b) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69:2989–2997PubMedGoogle Scholar
  87. Jeon S, Allen-Hoffmann BL, Lambert PF (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69:2989–2997PubMedGoogle Scholar
  88. Jones EE, Wells SI (2006) Cervical cancer and human papillomaviruses: inactivation of retinoblastoma and other tumor suppressor pathways. Curr Mol Med 6:795–808PubMedGoogle Scholar
  89. Jones DL, Alani RM, Munger K (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11:2101–2111PubMedCrossRefGoogle Scholar
  90. Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M (2007) Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 26:2180–2191PubMedCrossRefGoogle Scholar
  91. Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M (2009a) Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5:e1000397PubMedCrossRefGoogle Scholar
  92. Kadaja M, Silla T, Ustav E, Ustav M (2009b) Papillomavirus DNA replication – from initiation to genomic instability. Virology 384:360–368PubMedCrossRefGoogle Scholar
  93. Kao WH, Beaudenon SL, Talis AL, Huibregtse JM, Howley PM (2000) Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J Virol 74:6408–6417PubMedCrossRefGoogle Scholar
  94. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA (2007) NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol 81:3786–3796PubMedCrossRefGoogle Scholar
  95. Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA (2009) NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 83:6446–6456PubMedCrossRefGoogle Scholar
  96. Kessis TD, Connolly DC, Hedrick L, Cho KR (1996) Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13:427–431PubMedGoogle Scholar
  97. Knight GL, Grainger JR, Gallimore PH, Roberts S (2004) Cooperation between different forms of the human papillomavirus type 1 E4 protein to block cell cycle progression and cellular DNA synthesis. J Virol 78:13920–13933PubMedCrossRefGoogle Scholar
  98. Koskinen WJ, Chen RW, Leivo I, Makitie A, Back L, Kontio R, Suuronen R, Lindqvist C, Auvinen E, Molijn A, Quint WG, Vaheri A, Aaltonen LM (2003) Prevalence and physical status of human papillomavirus in squamous cell carcinomas of the head and neck. Int J Cancer 107:401–406PubMedCrossRefGoogle Scholar
  99. Kreimer AR, Alberg AJ, Daniel R, Gravitt PE, Viscidi R, Garrett ES, Shah KV, Gillison ML (2004a) Oral human papillomavirus infection in adults is associated with sexual behavior and HIV serostatus. J Infect Dis 189:686–698PubMedCrossRefGoogle Scholar
  100. Kreimer AR, Alberg AJ, Viscidi R, Gillison ML (2004b) Gender differences in sexual biomarkers and behaviors associated with human papillomavirus-16, -18, and -33 seroprevalence. Sex Transm Dis 31:247–256PubMedCrossRefGoogle Scholar
  101. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14:467–475PubMedCrossRefGoogle Scholar
  102. Law MF, Lowy DR, Dvoretzky I, Howley PM (1981) Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci USA 78:2727–2731PubMedCrossRefGoogle Scholar
  103. Lee AY, Chiang CM (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. J Biol Chem 284:2778–2786PubMedCrossRefGoogle Scholar
  104. Lehman CW, Botchan MR (1998) Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci USA 95:4338–4343PubMedCrossRefGoogle Scholar
  105. Lilley CE, Schwartz RA, Weitzman MD (2007) Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15:119–126PubMedCrossRefGoogle Scholar
  106. Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, Kelley ML, Baker CC, Huibregtse J, Schlegel R (2005) The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 280:10807–10816PubMedCrossRefGoogle Scholar
  107. Liu Y, Heilman SA, Illanes D, Sluder G, Chen JJ (2007) p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy. Cancer Res 67:2603–2610PubMedCrossRefGoogle Scholar
  108. Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R (2009) HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci USA 106:18780–18785PubMedCrossRefGoogle Scholar
  109. Longworth MS, Laimins LA (2004a) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372PubMedCrossRefGoogle Scholar
  110. Longworth MS, Laimins LA (2004b) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 78:3533–3541PubMedCrossRefGoogle Scholar
  111. Longworth MS, Wilson R, Laimins LA (2005) HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J 24:1821–1830PubMedCrossRefGoogle Scholar
  112. Loo YM, Melendy T (2004) Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. J Virol 78:1605–1615PubMedCrossRefGoogle Scholar
  113. Lowy DR, Munger K (2010) Prognostic implications of HPV in oropharyngeal cancer. N Engl J Med 363(1):82–84PubMedCrossRefGoogle Scholar
  114. Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241PubMedCrossRefGoogle Scholar
  115. Mannik A, Runkorg K, Jaanson N, Ustav M, Ustav E (2002) Induction of the bovine papillomavirus origin “onion skin”-type DNA replication at high E1 protein concentrations in vivo. J Virol 76:5835–5845PubMedCrossRefGoogle Scholar
  116. Marra F, Cloutier K, Oteng B, Marra C, Ogilvie G (2009) Effectiveness and cost effectiveness of human papillomavirus vaccine: a systematic review. Pharmacoeconomics 27:127–147PubMedCrossRefGoogle Scholar
  117. Masterson PJ, Stanley MA, Lewis AP, Romanos MA (1998) A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. J Virol 72:7407–7419PubMedGoogle Scholar
  118. Matsukura T, Koi S, Sugase M (1989) Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers. Virology 172:63–72PubMedCrossRefGoogle Scholar
  119. Maufort JP, Williams SM, Pitot HC, Lambert PF (2007) Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 67:6106–6112PubMedCrossRefGoogle Scholar
  120. Maufort JP, Shai A, Pitot HC, Lambert PF (2010) A role for HPV16 E5 in cervical carcinogenesis. Cancer Res 70:2924–2931PubMedCrossRefGoogle Scholar
  121. McBride AA, Romanczuk H, Howley PM (1991) The papillomavirus E2 regulatory proteins. J Biol Chem 266:18411–18414PubMedGoogle Scholar
  122. McBride AA, McPhillips MG, Oliveira JG (2004) Brd4: tethering, segregation and beyond. Trends Microbiol 12:527–529PubMedCrossRefGoogle Scholar
  123. McKaig RG, Baric RS, Olshan AF (1998) Human papillomavirus and head and neck cancer: epidemiology and molecular biology. Head Neck 20:250–265PubMedCrossRefGoogle Scholar
  124. McLaughlin-Drubin ME, Huh KW, Munger K (2008) Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 82:8695–8705PubMedCrossRefGoogle Scholar
  125. McPhillips MG, Ozato K, McBride AA (2005) Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J Virol 79:8920–8932PubMedCrossRefGoogle Scholar
  126. McPhillips MG, Oliveira JG, Spindler JE, Mitra R, McBride AA (2006) Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80:9530–9543PubMedCrossRefGoogle Scholar
  127. Mellin H, Friesland S, Lewensohn R, Dalianis T, Munck-Wikland E (2000) Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. Int J Cancer 89:300–304PubMedCrossRefGoogle Scholar
  128. Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, El-Sherif A, Morris L, Seth R, Hibma M, Jenkins D, Lambert P, Coleman N, Doorbar J (2003) Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77:10186–10201PubMedCrossRefGoogle Scholar
  129. Mohr IJ, Clark R, Sun S, Androphy EJ, MacPherson P, Botchan MR (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699PubMedCrossRefGoogle Scholar
  130. Moody CA, Laimins LA (2009) Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5:e1000605PubMedCrossRefGoogle Scholar
  131. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8:4099–4105PubMedGoogle Scholar
  132. Munger K, Scheffner M, Huibregtse JM, Howley PM (1992) Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12:197–217PubMedGoogle Scholar
  133. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78:11451–11460PubMedCrossRefGoogle Scholar
  134. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527PubMedCrossRefGoogle Scholar
  135. Nakahara T, Nishimura A, Tanaka M, Ueno T, Ishimoto A, Sakai H (2002) Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 76:10914–10920PubMedCrossRefGoogle Scholar
  136. Nakahara T, Peh WL, Doorbar J, Lee D, Lambert PF (2005) Human papillomavirus type 16 E1circumflexE4 contributes to multiple facets of the papillomavirus life cycle. J Virol 79:13150–13165PubMedCrossRefGoogle Scholar
  137. Nasman A, Attner P, Hammarstedt L, Du J, Eriksson M, Giraud G, Ahrlund-Richter S, Marklund L, Romanitan M, Lindquist D, Ramqvist T, Lindholm J, Sparen P, Ye W, Dahlstrand H, Munck-Wikland E, Dalianis T (2009) Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 125:362–366PubMedCrossRefGoogle Scholar
  138. Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF (2003a) The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol 77:6957–6964PubMedCrossRefGoogle Scholar
  139. Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE (2003b) Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 23:8970–8981PubMedCrossRefGoogle Scholar
  140. Oliveira JG, Colf LA, McBride AA (2006) Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci USA 103:1047–1052PubMedCrossRefGoogle Scholar
  141. Ozbun MA, Meyers C (1998) Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology 248:218–230PubMedCrossRefGoogle Scholar
  142. Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24:867–876PubMedCrossRefGoogle Scholar
  143. Park JS, Hwang ES, Park SN, Ahn HK, Um SJ, Kim CJ, Kim SJ, Namkoong SE (1997) Physical status and expression of HPV genes in cervical cancers. Gynecol Oncol 65:121–129PubMedCrossRefGoogle Scholar
  144. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044PubMedCrossRefGoogle Scholar
  145. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  146. Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J (2002) Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 76:10401–10416PubMedCrossRefGoogle Scholar
  147. Peh WL, Brandsma JL, Christensen ND, Cladel NM, Wu X, Doorbar J (2004) The viral E4 protein is required for the completion of the cottontail rabbit papillomavirus productive cycle in vivo. J Virol 78:2142–2151PubMedCrossRefGoogle Scholar
  148. Pei XF, Meck JM, Greenhalgh D, Schlegel R (1993) Cotransfection of HPV-18 and v-fos DNA induces tumorigenicity of primary human keratinocytes. Virology 196:855–860PubMedCrossRefGoogle Scholar
  149. Peitsaro P, Johansson B, Syrjanen S (2002) Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 40:886–891PubMedCrossRefGoogle Scholar
  150. Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367PubMedCrossRefGoogle Scholar
  151. Pett MR, Alazawi WO, Roberts I, Dowen S, Smith DI, Stanley MA, Coleman N (2004) Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res 64:1359–1368PubMedCrossRefGoogle Scholar
  152. Pfister H (2003) Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 31:52–56PubMedCrossRefGoogle Scholar
  153. Piirsoo M, Ustav E, Mandel T, Stenlund A, Ustav M (1996) Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J 15:1–11PubMedGoogle Scholar
  154. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63:4862–4871PubMedGoogle Scholar
  155. Romanczuk H, Thierry F, Howley PM (1990) Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol 64:2849–2859PubMedGoogle Scholar
  156. Schaeffer AJ, Nguyen M, Liem A, Lee D, Montagna C, Lambert PF, Ried T, Difilippantonio MJ (2004) E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res 64:538–546PubMedCrossRefGoogle Scholar
  157. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136PubMedCrossRefGoogle Scholar
  158. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505PubMedCrossRefGoogle Scholar
  159. Schwartz SM, Daling JR, Doody DR, Wipf GC, Carter JJ, Madeleine MM, Mao EJ, Fitzgibbons ED, Huang S, Beckmann AM, McDougall JK, Galloway DA (1998) Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst 90:1626–1636PubMedCrossRefGoogle Scholar
  160. Schweiger MR, You J, Howley PM (2006) Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 80:4276–4285PubMedCrossRefGoogle Scholar
  161. Senechal H, Poirier GG, Coulombe B, Laimins LA, Archambault J (2007) Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 358:10–17PubMedCrossRefGoogle Scholar
  162. Sinclair A, Yarranton S, Schelcher C (2006) DNA-damage response pathways triggered by viral replication. Expert Rev Mol Med 8:1–11PubMedCrossRefGoogle Scholar
  163. Skiadopoulos MH, McBride AA (1998) Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. J Virol 72:2079–2088PubMedGoogle Scholar
  164. Smith EM, Ritchie JM, Summersgill KF, Klussmann JP, Lee JH, Wang D, Haugen TH, Turek LP (2004) Age, sexual behavior and human papillomavirus infection in oral cavity and oropharyngeal cancers. Int J Cancer 108:766–772PubMedCrossRefGoogle Scholar
  165. Spanos WC, Nowicki P, Lee DW, Hoover A, Hostager B, Gupta A, Anderson ME, Lee JH (2009) Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer. Arch Otolaryngol Head Neck Surg 135:1137–1146PubMedCrossRefGoogle Scholar
  166. Spardy N, Duensing A, Charles D, Haines N, Nakahara T, Lambert PF, Duensing S (2007) The human papillomavirus type 16 E7 oncoprotein activates the Fanconi Anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 81(23):13265–13270PubMedCrossRefGoogle Scholar
  167. Spardy N, Covella K, Cha E, Hoskins EE, Wells SI, Duensing A, Duensing S (2009) Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res 69:7022–7029PubMedCrossRefGoogle Scholar
  168. Steger G, Corbach S (1997) Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 71:50–58PubMedGoogle Scholar
  169. Straight SW, Herman B, McCance DJ (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 69:3185–3192PubMedGoogle Scholar
  170. Strati K, Lambert PF (2007) Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res 67:11585–11593PubMedCrossRefGoogle Scholar
  171. Syrjanen K, Vayrynen M, Castren O, Mantyjarvi R, Pyrhonen S, Yliskoski M (1983) Morphological and immunohistochemical evidence of human papilloma virus (HPV) involvement in the dysplastic lesions of the uterine cervix. Int J Gynaecol Obstet 21:261–269PubMedCrossRefGoogle Scholar
  172. Tan S-H, Gloss B, Bernard H-U (1992) During negative regulation of the human papillomavirus-16 E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element. Nucleic Acids Res 20:251–256PubMedCrossRefGoogle Scholar
  173. Tan SH, Leong LE, Walker PA, Bernard HU (1994) The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol 68:6411–6420PubMedGoogle Scholar
  174. Thierry F (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384:375–379PubMedCrossRefGoogle Scholar
  175. Thierry F, Howley PM (1991) Functional analysis of E2-mediated repression of the HPV18 P105 promoter. New Biol 3:90–100PubMedGoogle Scholar
  176. Thierry F, Yaniv M (1987) The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J 6:3391–3397PubMedGoogle Scholar
  177. Thomas MC, Chiang CM (2005) E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 17:251–264PubMedCrossRefGoogle Scholar
  178. Thomas JT, Laimins LA (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol 72:1131–1137PubMedGoogle Scholar
  179. Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA 96:8449–8454PubMedCrossRefGoogle Scholar
  180. Thompson DA, Belinsky G, Chang TH, Jones DL, Schlegel R, Munger K (1997) The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15:3025–3035PubMedCrossRefGoogle Scholar
  181. Thorland EC, Myers SL, Persing DH, Sarkar G, McGovern RM, Gostout BS, Smith DI (2000) Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res 60:5916–5921PubMedGoogle Scholar
  182. Thorland EC, Myers SL, Gostout BS, Smith DI (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22:1225–1237PubMedCrossRefGoogle Scholar
  183. van Houten VM, Snijders PJ, van den Brekel MW, Kummer JA, Meijer CJ, van Leeuwen B, Denkers F, Smeele LE, Snow GB, Brakenhoff RH (2001) Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 93:232–235PubMedCrossRefGoogle Scholar
  184. Van Tine BA, Dao LD, Wu SY, Sonbuchner TM, Lin BY, Zou N, Chiang CM, Broker TR, Chow LT (2004) Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci USA 101:4030–4035PubMedCrossRefGoogle Scholar
  185. Venturini F, Braspenning J, Homann M, Gissmann L, Sczakiel G (1999) Kinetic selection of HPV 16 E6/E7-directed antisense nucleic acids: anti-proliferative effects on HPV 16-transformed cells. Nucleic Acids Res 27:1585–1592PubMedCrossRefGoogle Scholar
  186. Venuti A, Manni V, Morello R, De Marco F, Marzetti F, Marcante ML (2000) Physical state and expression of human papillomavirus in laryngeal carcinoma and surrounding normal mucosa. J Med Virol 60:396–402PubMedCrossRefGoogle Scholar
  187. Vernon SD, Unger ER, Reeves WC (1998) Human papillomaviruses and anogenital cancer. N Engl J Med 338:921–922PubMedCrossRefGoogle Scholar
  188. von Knebel Doeberitz M, Rittmuller C, zur Hausen H, Durst M (1992) Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int J Cancer 51:831–834CrossRefGoogle Scholar
  189. Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P, Davy C, Masterson PJ, Walker PA, Laskey P, Omary MB, Doorbar J (2004) Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 78:821–833PubMedCrossRefGoogle Scholar
  190. Watanabe S, Kanda T, Yoshiike K (1993) Growth dependence of human papillomavirus 16 DNA-positive cervical cancer cell lines and human papillomavirus 16-transformed human and rat cells on the viral oncoproteins. Jpn J Cancer Res 84:1043–1049PubMedCrossRefGoogle Scholar
  191. Wiest T, Schwarz E, Enders C, Flechtenmacher C, Bosch FX (2002) Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene 21:1510–1517PubMedCrossRefGoogle Scholar
  192. Wilson R, Fehrmann F, Laimins LA (2005) Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol 79:6732–6740PubMedCrossRefGoogle Scholar
  193. Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282:13141–13145PubMedCrossRefGoogle Scholar
  194. Wu SY, Lee AY, Hou SY, Kemper JK, Erdjument-Bromage H, Tempst P, Chiang CM (2006) Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 20:2383–2396PubMedCrossRefGoogle Scholar
  195. Yan J, Li Q, Lievens S, Tavernier J, You J (2010) Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol 84:76–87PubMedCrossRefGoogle Scholar
  196. You J, Croyle JL, Nishimura A, Ozato K, Howley PM (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117:349–360PubMedCrossRefGoogle Scholar
  197. You J, Schweiger MR, Howley PM (2005) Inhibition of E2 binding to Brd4 enhances viral genome loss and phenotypic reversion of bovine papillomavirus-transformed cells. J Virol 79:14956–14961PubMedCrossRefGoogle Scholar
  198. Yu T, Peng YC, Androphy EJ (2007) Mitotic kinesin-like protein 2 binds and colocalizes with papillomavirus E2 during mitosis. J Virol 81:1736–1745PubMedCrossRefGoogle Scholar
  199. Zeitler J, Hsu CP, Dionne H, Bilder D (2004) Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble. J Cell Biol 167:1137–1146PubMedCrossRefGoogle Scholar
  200. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13:2323–2330PubMedGoogle Scholar
  201. zur Hausen H (2000) Papillomavirus causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92:690–698PubMedCrossRefGoogle Scholar
  202. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350PubMedCrossRefGoogle Scholar
  203. zur Hausen H (2009) Papillomaviruses in the causation of human cancers – a brief historical account. Virology 384:260–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Division of Hematology/OncologyCincinnati Children’s HospitalCincinnatiUSA

Personalised recommendations