Josephson Computer Technology

  • Hans H. Zappe
Part of the NATO Advanced Science Institutes Series book series

Abstract

Spurred by an insatiable thirst for machines with ever growing computing power, increasing attention is being given to today’s fastest systems, collectively known as supercomputers [1]. Here we shall concentrate on high performance machines of a different class, powerful future computers expected to exceed present day capabilities by over one order of magnitude. The discussion will center on one possible approach that promises to achieve the required technological breakthroughs. It is a superconductive technology based on the Josephson effect.

Keywords

Vortex Mercury Helium GaAs Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Levine, Scientific American 246 #1, 118 (1982).Google Scholar
  2. 2.
    D. Schmandt-Besserat, Scientific American 238 #6, 50 (1978).Google Scholar
  3. 3.
    H. H. Goldstine, The Computer from Pascal to von NeumannPrinceton University Press (1972).Google Scholar
  4. 4.
    L. M. Branscomb, Science 215, 755 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Pittler, D. M. Powers, D. L. Schnabel, IBM J. Res. Develop. 26, 2 (1982).Google Scholar
  6. 6.
    E. Braun, S. MacDonald, Revolution in Miniature Cambridge University Press, Cambridge (1978).Google Scholar
  7. 7.
    J. Worlton, A Philosophy of Supercomputing Los Alamos Scientific Laboratory Report LA-8849MS (1981).Google Scholar
  8. 8.
    J. Matisoo, Appl. Phys. Lett. 9, 167 (1966).Google Scholar
  9. 9.
    J. Matisoo, Proc. IEEE 55, 2052 (1967).CrossRefGoogle Scholar
  10. 10.
    W. Anacker, IEEE Spectrum, 16, 26 (1979).Google Scholar
  11. 11.
    W. Anacker, IBM J. Res. Develop., 24 107 (1980).Google Scholar
  12. 12.
    E. Shapiro, Digital Technology Status and Trends, 12, 199, R. Oldenbourg Verlag, Munchen, Wien (1981).Google Scholar
  13. 13.
    J. W. Beyers et al., IEEE International Solid-State Circuits Conference Digest of Technical Papers (1981).Google Scholar
  14. 14.
    A. J. Blodgett, D. R. Barbour, IBM J. Res. Develop., 26, 30 (1982).Google Scholar
  15. 15.
    R. C. Chu, U. P. Hwang, R. E. Simons, IBM J. Res. Develop., 26, 45 (1982).Google Scholar
  16. 16.
    E. G. Brentari, P. J. Giarratano, R. V. Smith, Boiling Heat Transfer for Oxygen Nitrogen, Hydrogen and Helium, NBS Technical Note No. 317 (1965).Google Scholar
  17. 17.
    D. B. Tuckerman, R. F. W. Pease, IEEE Electr. Dev. Lett. EDL-2, 126 (1981).Google Scholar
  18. 18.
    R. H. Dennard et al., IEEE J. of Solid-State Circuits SC-9, 256 (1974).Google Scholar
  19. 19.
    J. T. Wallmark, IEEE Trans. Electr. Dev. ED-29, 451 (1982).Google Scholar
  20. 20.
    B. S. Landman, R. L. Russo, IEEE Trans. on Computers G20, 1469 (1971).CrossRefGoogle Scholar
  21. 21.
    W. E. Donath, IBM J. Res. Develop. 18, 401 (1974).MATHGoogle Scholar
  22. 22.
    H. H. Zappe, “Proceedings NSF Workshop on Opportunities for Microstructure Devices,” Airlie, VA, Nov. 19–22 (1978).Google Scholar
  23. 23.
    E. Flint, J. Van Cleve, Advances in Cryogenic Engineering 27, to be published.Google Scholar
  24. 24.
    D. N. Lyon, “International Advances in Cryogenic Engineering,” Plenum Press, NY, T-5, 371 (1965).Google Scholar
  25. 25.
    J. C. Swihart, J. Appl. Phys. 32, 461 (1961).ADSCrossRefGoogle Scholar
  26. 26.
    D. C. Mattis, J. Bardeen, Phys. Rev. 111, 412 (1958).ADSMATHCrossRefGoogle Scholar
  27. 27.
    W. H. Henkels, C. J. Kircher, IEEE Trans. Magn. MAG-13, 63 (1977).Google Scholar
  28. 28.
    R. L. Kautz, J. Appl. Phys. 49, 308 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    R. L. Kautz, J. of Research of the National Bureau of Standards 84, 247 (1979).CrossRefGoogle Scholar
  30. 30.
    T. Van Duzer, C. W. Turner, Principles of Superconductive Devices and Circuits Elsevier, North Holland, Inc., New York (1981).Google Scholar
  31. 31.
    For convenience, equation III-3 is written in terms of current rather than current density. This is valid since we are here assuming a point-like junction as defined later in the text.Google Scholar
  32. 32.
    B. D. Josephson, Phys. Lett. 1, 251 (1962).ADSMATHCrossRefGoogle Scholar
  33. 33.
    J. M. Rowell, Phys. Rev. Lett. 11, 200 (1963).CrossRefGoogle Scholar
  34. 34.
    S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).CrossRefGoogle Scholar
  35. 35.
    S. Basavaiah, J. M. Eldridge, J. Matisoo, J. Appl. Phys. 45, 457 (1974).ADSCrossRefGoogle Scholar
  36. 36.
    W. C. Stewart, Appl. Phys. Lett., 12, 277, (1968).Google Scholar
  37. 37.
    D. E. McCumber, J. Appl. Phys., 39, 3113 (1968).ADSCrossRefGoogle Scholar
  38. 38.
    R. C. Jacklevic, J. Lambe, J. E. Mercereau, and A. H. Silver, Phys. Rev., 140, A1628, (1965).ADSCrossRefGoogle Scholar
  39. 39.
    H. H. Zappe, Appl. Phys. Lett. 27, 432 (1975).Google Scholar
  40. 40.
    H. H. Zappe, IEEE Trans. Magn., MAG-13, 41 (1977).Google Scholar
  41. 41.
    W. Tsang, T. Van Duzer, J. Appl. Phys. 46, 4573 (1975).ADSCrossRefGoogle Scholar
  42. 42.
    P. Wolf, Proceedings International Conference on Superconducting Quantum Devices, Berlin 1976 Walter de Gruyter, Berlin (1977).Google Scholar
  43. 43.
    B. S. Landman, IEEE Trans. Magn. MAG-13, 871 (1977).Google Scholar
  44. 44.
    E. O. Schultz-Dubois, P. Wolf, Appl. Phys. 16, 317 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    R. L. Peterson, C. A. Hamilton, J. Appl. Phys. 50, 8135 (1979).ADSCrossRefGoogle Scholar
  46. 46.
    T. Gheewala, Appl. Phys. Lett. 33, 781 (1978).Google Scholar
  47. 47.
    H. Beha, Electron Lett. 13, 596 (1977).CrossRefGoogle Scholar
  48. 48.
    E. P. Harris, IEEE Trans. Magn. MAG-15, 562 (1979).Google Scholar
  49. 49.
    R. L. Peterson, SQUID’80, eds. Hans-Dieter Hahlbohm, Heinz Lubbig, Walter de Gruyter & Co., Berlin-New York, 685 (1980).Google Scholar
  50. 50.
    H. H. Zappe, K. R. Grebe, J. Appl. Phys. 44, 865 (1973).ADSCrossRefGoogle Scholar
  51. 51.
    N. R. Werthamer, Phys. Rev. 147, 255 (1966).ADSCrossRefGoogle Scholar
  52. 52.
    I. O. Kulik, Sov. Phys.-Tech. Phys. 12, 111 (1967).Google Scholar
  53. 53.
    H. H. Zappe, B. S. Landman, J. Appl. Phys. 49, 344 (1978).ADSCrossRefGoogle Scholar
  54. 54.
    H. H. Zappe, B. S. Landman, J. Appl. Phys. 49, 4149 (1978).ADSCrossRefGoogle Scholar
  55. 55.
    D. B. Tuckerman, J. H. Magerlein, Appl. Phys. Lett. 37, 241 (1980).ADSCrossRefGoogle Scholar
  56. 56.
    S. Faris, E. A. Valsamakis, J. Appl. Phys. 52, 915 (1981).ADSCrossRefGoogle Scholar
  57. 57.
    H. H. Zappe, J. Appl. Phys., 44, 1371, (1973).ADSCrossRefGoogle Scholar
  58. 58.
    T. A. Fulton, R. C. Dynes, Solid-State Comm. 9, 1069 (1971).ADSCrossRefGoogle Scholar
  59. 59.
    R. E. Jewett, T. Van Duzer, IEEE Trans. Magn. MAG-17, 599 (1981).Google Scholar
  60. 60.
    E. P. Harris, W. H. Chang, IEEE Trans. Magn. MAG-17, 603 (1981).Google Scholar
  61. 61.
    A. Mukherjee, T. Gheewala, IEDM 5. 6, 122 (1981).Google Scholar
  62. 62.
    M. B. Ketchen, C. J. Anderson, Appl. Phys. Lett. 40, 272 (1982).ADSCrossRefGoogle Scholar
  63. 63.
    N. Raver, private communication.Google Scholar
  64. 64.
    V. Ambegaokar, B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).ADSCrossRefGoogle Scholar
  65. 65.
    T. A. Fulton, L. N. Dunkleberger, Phys. Rev. B9, 4760 (1974).ADSCrossRefGoogle Scholar
  66. 66.
    P. A. Lee, J. Appl. Phys. 42, 325 (1971).ADSCrossRefGoogle Scholar
  67. 67.
    E. P. Harris, private communication.Google Scholar
  68. 68.
    M. Buttiker, E. P. Harris, R. Landauer, Bull. Am. Phys. Soc. 27, 267 (1982).Google Scholar
  69. 69.
    M. Klein, A. Mukherjee, Appl. Phys. Lett. 40, 744 (1982).ADSCrossRefGoogle Scholar
  70. 70.
    K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).ADSCrossRefGoogle Scholar
  71. 71.
    W. Y. Lum, T. Van Duzer, J. Appl. Phys. 48, 1693 (1977).ADSCrossRefGoogle Scholar
  72. 72.
    J. Seto, T. Van Duzer, LT-13, Plenum Publishing Corp. 3, 328.Google Scholar
  73. 73.
    C. L. Huang, T. Van Duzer, Appl. Phys. Lett. 25, 753 (1974).ADSCrossRefGoogle Scholar
  74. 74.
    R. Ruby, T. Van Duzer, IEEE Trans. Electr. Devices ED-28, 1394 (1981).Google Scholar
  75. 75.
    D. J. Herrell, IEEE J. Solid-State Circuits SC-9, 277, (1974).Google Scholar
  76. 76.
    M. Klein, D. J. Herrell, IEEE Trans. Solid-State Circuits SC-13, 577 (1978).Google Scholar
  77. 77.
    T. Gheewala, Appl. Phys. Lett., 34, 670 (1979).Google Scholar
  78. 78.
    T. R. Gheewala, IEEE J. Solid-State Circuits SC-14, 787 (1979).Google Scholar
  79. 79.
    T. Gheewala, IBM J. of Res. Develop. 24, 130 (1980).CrossRefGoogle Scholar
  80. 80.
    T. R. Gheewala, IEEE Trans. Electr. Dev. ED-27, 1857 (1980).Google Scholar
  81. 81.
    A. Davidson, IEEE J. Solid State Circuits SC-13, 583 (1978).Google Scholar
  82. 82.
    H. C. Jones, T. R. Gheewala, Internat. Electr. Dev. Meeting CH1511, 884 (1980).Google Scholar
  83. 83.
    H. C. Jones, T. R. Gheewala, IEEE J. Solid State Circuits to be published.Google Scholar
  84. 84.
    S. Dhong and T. Gheewala, Appl. Phys. Lett. 38, 936 (1981).ADSCrossRefGoogle Scholar
  85. 85.
    M. Klein, to be published in IEEE J. Solid-State Circuits, SC-17, (1982).Google Scholar
  86. 86.
    T. Gheewala, A. Mukherjee, IEDM Tech. Dig. 482, (1979).Google Scholar
  87. 87.
    T. A. Fulton, J. H. Magerlein, L. N. Dunkleberger, IEEE Trans. Magn. MAG-13, 56 (1977).Google Scholar
  88. 88.
    J. H. Magerlein, L. N. Dunkleberger, IEEE Trans. Magn. MAG-13, 585 (1977).Google Scholar
  89. 89.
    J. H. Magerlein, L. N. Dunkleberger, T. A. Fulton, AIP Conference Proceedings 44 ISSN, 459 (1978).Google Scholar
  90. 90.
    T. A. Fulton, S. S. Pei, L N Dunkleberger, Appl. Phys. Lett. 34, 709 (1979).ADSCrossRefGoogle Scholar
  91. 91.
    T. C. Wang, R. M. Josephs, B. F. Stein, P. L. Young, W. E. Flannery, IEDM81 CH1708, 118 (1981).Google Scholar
  92. 92.
    T. C. Wang, R. M. Josephs, B. F. Stein, P. L. Young, W. E. Flannery, IEEE Trans. Electr. Dev. ED-29, 414 (1982).Google Scholar
  93. 93.
    S. Takadâ, S. Kosaka, H. Hayakawa, Jap. J. Appl. Phys. 19, 607 (1980).CrossRefGoogle Scholar
  94. 94.
    J. Sone, T. Yoshida, H. Abe, Appl. Phys. Lett. 40, 741 (1982).ADSCrossRefGoogle Scholar
  95. 95.
    A. F. Hebard, S. S. Pei, L. N. Dunkleberger, T. A. Fulton, IEEE Trans. Magn. MAG-15, 408 (1979).Google Scholar
  96. 96.
    K. Lofstrom, T. Van Duzer, IEEE Trans. Magn. MAG-13, 599 (1977).Google Scholar
  97. 97.
    P. C. Arnett, D. J. Herrell, IEEE Trans. Magn. MAG-15, 544 (1979).Google Scholar
  98. 98.
    M. B. Ketchen, IEDM79 CH1504, 489 (1979).Google Scholar
  99. 99.
    M. B. Ketchen, IEEE Int. Conf. Circuits and Computers (1980).Google Scholar
  100. 100.
    C. J. Anderson, M. B. Ketchen, IEEE Trans. Magn. MAG-17 595 (1981).Google Scholar
  101. 101.
    H. H. Zappe, IEEE J. Solid State Circuits SC-10, 12 (1975).Google Scholar
  102. 102.
    W. H. Henkels, H. H. Zappe, IEEE J. Solid-State Circuits SC-13, 591 (1978).Google Scholar
  103. 103.
    S. M. Faris, W. H. Henkels, E. A. Valsamakis, H. H. Zappe, IBM J. of Res. Develop. 24, 143 (1980).Google Scholar
  104. 104.
    W. H. Henkels, J. Appl. Phys. 50, 8143 (1979).ADSCrossRefGoogle Scholar
  105. 105.
    P. Gueret, Th. O. Mohr, P. Wolf, IEEE Trans. Magn. MAG-13 52 (1977).Google Scholar
  106. 106.
    R. F. Broom, P. Gueret, W. Kotyczka, Th. O. Mohr, A. Moser, A. Oosenbrug, P. Wolf, 1977 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers 60, (1977).Google Scholar
  107. 107.
    P. Gueret, A. Moser, P. Wolf, IBM J. Res. Develop. 24, 155 (1980).Google Scholar
  108. 108.
    P. Wolf, IBM Tech. Disci. Bull. 16, 214 (1973).Google Scholar
  109. 109.
    W. H. Henkels, J. H. Greiner, IEEE J. Solid-State Circuits SC-14, 794 (1979).Google Scholar
  110. 110.
    H. H. Zappe, IEEE Trans. Electr. Dev. ED-27, 1870 (1980).Google Scholar
  111. 111.
    S. M. Faris, IEEE J. Solid-State Circuits SC-14, 699 (1979).Google Scholar
  112. 112.
    S. M. Faris, A. Davidson, IEEE Trans. Magn. MAG-15, 416 (1979).Google Scholar
  113. 113.
    J. W. Matthews, C. J. Kircher, R. E. Drake, Thin Solid Films 47, 95 (1977).ADSCrossRefGoogle Scholar
  114. 114.
    M. Koyanagi, T. Endo, A. Nakamma, Jap. J. Appl. Phys. 20, L901 (1981).ADSCrossRefGoogle Scholar
  115. 115.
    D. G. McDonald, E. G. Johnson, R. E. Harris, Phys. Rev. B 13, 1028 (1976).ADSCrossRefGoogle Scholar
  116. 116.
    R. E. Harris, Phys. Rev. B 11, 3329 (1975).Google Scholar
  117. 117.
    R. E. Harris, R. C. Dynes, D. M. Ginsberg, Phys. Rev. B 14, 993 (1976).ADSCrossRefGoogle Scholar
  118. 118.
    R. E. Harris, J. Appl. Phys. 48, 5188 (1977).ADSCrossRefGoogle Scholar
  119. 119.
    L. E. Alsop, A. S. Goodman, F. G. Gustayson, W. L. Miranker, J. Comp. Phys. 31, 216 (1979).ADSMATHCrossRefGoogle Scholar
  120. 120.
    W. H. Chang, J. Appl. Phys. 50, 8129 (1979).ADSCrossRefGoogle Scholar
  121. 121.
    W. H. Chang, IEEE Trans. Magn. MAG-17, 764 (1981).Google Scholar
  122. 122.
    W. H. Chang, J. Appl. Phys. 52, 1417 (1981).ADSCrossRefGoogle Scholar
  123. 123.
    W. H. Henkels, Appl. Phys. Lett. 32, 829 (1978).Google Scholar
  124. 124.
    M. Klein, IEEE Trans. Magn. MAG-13, 59 (1977).Google Scholar
  125. 125.
    L. M. Geppert, J. H. Greiner, D. J. Herrell, S. Klepner, IEEE Trans. Magn. MAG-15, 412 (1979).Google Scholar
  126. 126.
    H. H. Zappe, Appl. Phys. Lett. 25, 424 (1974).Google Scholar
  127. 127.
    Advanced Statistical Analysis Program (ASTAP) Program Reference Manual, IBM Corporation, White Plains, NY, 1973.Google Scholar
  128. 128.
    W. H. Henkels, private communication.Google Scholar
  129. 129.
    E. BenJacob, Y. Imry, Journal de Physique Colloque C6 Suppl. au n°8, 39, 569 (1978).Google Scholar
  130. 130.
    T. V. Rajeevakumar, L. M. Geppert, J. T. Chen, J. Appl. Phys. 51, 2744 (1980).ADSCrossRefGoogle Scholar
  131. 131.
    L. Gunther, Y. Imry, Phys. Rev. Lett. 44, 1225 (1980).ADSCrossRefGoogle Scholar
  132. 132.
    P. M. Marcus, Y. Imry, Solid-State Comm. 33, 345 (1980).ADSCrossRefGoogle Scholar
  133. 133.
    T. V. Rajeevakumar, private communication.Google Scholar
  134. 134.
    K. Nakajima, Y. Onodera, J. Appl. Phys. 47, 1620 (1976).ADSCrossRefGoogle Scholar
  135. 135.
    A. Matsuda, H. Yoshikiyo, J. Appl. Phys. 52, 5727 (1981).ADSCrossRefGoogle Scholar
  136. 136.
    T. V. Rajeevakumar, IEEE Trans. Magn. MAG-17, 1 (1981).Google Scholar
  137. 137.
    K. Enpuku, K. Yoshida, F. Irie, K. Hamasaki, IEEE Trans. Electron Devices Ed-27, 1973 (1980).Google Scholar
  138. 138.
    T. V. Rajeevakumar, Appl. Phys. Lett. 39, 439 (1981).Google Scholar
  139. 139.
    T. A. Fulton, L. N. Dunkleberger, Appl. Phys. Lett. 22, 232 (1973).ADSCrossRefGoogle Scholar
  140. 140.
    H. Beha, W. Jutzi, G. Mischke, IEEE Trans. Electron Devices ED-27, 1882 (1980).Google Scholar
  141. 141.
    J. P. Hurrell, D. C. Pridmore-Braun, A. H. Silver, IEEE Trans. Electron Devices ED-27, 1887 (1980).Google Scholar
  142. 142.
    K. K. Likarev, IEEE Trans. Magn. MAG-13, 242 (1977).Google Scholar
  143. 143.
    H. Tamura, Y. Okabe, T. Sugano, IEEE Trans. Electron Devices ED-27, 2035 (1980).Google Scholar
  144. 144.
    S. M. Faris, IBM Tech. Disci. Bull. 21, 3384 (1979).Google Scholar
  145. 145.
    S. M. Faris, Hardware and Software Concepts in VLSI, Chapter 9, Van Nostrand Reinhold Company, (1982).Google Scholar
  146. 146.
    S. M. Faris, IEEE Circuits and Systems Magazine 3, 2 (1981).ADSGoogle Scholar
  147. 147.
    M. R. Beasley, C. J. Kircher, Superconductor Materials Science - Metallurgy, Fabrication and Applications, Chapter 9, eds. S. Foner and B. B. Schwartz, Plenum Press, New York, London.Google Scholar
  148. 148.
    J. H. Greiner et al., IBM J. Res. Develop. 24, 195 (1980).CrossRefGoogle Scholar
  149. 149.
    J. H. Greiner, S. P. Klepner, J. Vac. Sci. Technol. 18, 262 (1981).ADSGoogle Scholar
  150. 150.
    C. Y. Fu, T. Van Duzer, IEEE Trans. Magn. MAG-17, 290 (1981).Google Scholar
  151. 151.
    S. K. Lahiri, Thin Solid Film 41, 209 (1977).ADSCrossRefGoogle Scholar
  152. 152.
    C. J. Kircher, S. K. Lahiri, IBM J. Res. Develop. 24, 235 (1980).Google Scholar
  153. 153.
    S. K. Lahiri, S. Basavaiah, J. Appl. Phys. 49, 2880 (1978).ADSCrossRefGoogle Scholar
  154. 154.
    J. H. Greiner, J. Appl. Phys. 42, 5151 (1971); 45, 32 (1974).Google Scholar
  155. 155.
    J. M. Baker, J. H. Magerlein, R. W. Johnson, J. Vac. Sci. Technol. 20, 175 (1982).ADSGoogle Scholar
  156. 156.
    G. B. Donaldson, H. Faghihi-Nejad, IEEE Trans. Electron Devices ED-27, 1988 (1980).Google Scholar
  157. 157.
    S. K. Lahiri, S. Basavaiah, C. J. Kircher, Appl. Phys. Lett. 36, 334 (1980).ADSCrossRefGoogle Scholar
  158. 158.
    S. Basavaiah, J. H. Greiner, H. H. Zappe, S. J. Singer, J. Appl. Phys. 51, 1702 (1980).ADSCrossRefGoogle Scholar
  159. 159.
    S. K. Lahiri, O. C. Wells, Appl. Phys. Lett. 15, 234 (1969).ADSCrossRefGoogle Scholar
  160. 160.
    S. K. Lahiri, J. Appl. Phys. 41, 3172 (1970).ADSCrossRefGoogle Scholar
  161. 161.
    M. Murakami, Thin Solid Films 55, 101 (1978).ADSCrossRefGoogle Scholar
  162. 162.
    C. Y. Fu, T. Van Duzer, J. Vac. Sci. Technol. 17, 752 (1980).ADSGoogle Scholar
  163. 163.
    S. Basavaiah, J. H. Greiner, J. Appl. Phys. 48, 4630 (1977).ADSCrossRefGoogle Scholar
  164. 164.
    H.-C. W. Huang, et al., IEEE Trans. Electron Devices ED-27, 1979 (1980).Google Scholar
  165. 165.
    D. B. Tuckerman, private communication.Google Scholar
  166. 166.
    A. Mukherjee, IEEE Electron Device Lett. EDL-3, 29 (1982).Google Scholar
  167. 167.
    S. I. Raider, R. W. Johnson, R. E. Drake, R. A. Pollak, presented at the Electrochemical Society Meeting, Hollywood, FL (1980).Google Scholar
  168. 168.
    R. F. Broom, S. I. Raider, A. Oosenbrug, R. Drake, W. Walter, IEEE Trans. Electron Devices ED-27, 1998 (1980).Google Scholar
  169. 169.
    S. I. Raider, R. W. Johnson, T. S. Kuan, R. E. Drake, R. A. Pollak, submitted to the Applied Superconductivity Conference, Knoxville, TN (1982).Google Scholar
  170. 170.
    J. H. Magerlein, IEEE Trans. Magn. MAG-17, 286 (1981).Google Scholar
  171. 171.
    M. Heilblum, S. Wang, J. R. Whinnery, T. K. Gustayson, IEEE J. Quantum Electronics, QE-14, 159 (1978).Google Scholar
  172. 172.
    R. H. Havemann, J. Vac. Sci. Technol., 15, 389 (1978).ADSGoogle Scholar
  173. 173.
    R. E. Howard, E. L. Hu, L. D. Jackel, L. A. Fetter, R. H. Bosworth, Appl. Phys. Lett. 35, 879 (1979).ADSCrossRefGoogle Scholar
  174. 174.
    R. F. Broom, A. Oosenbrug, W. Walter, Appl. Phys. Lett. 37, 237 (1980).ADSCrossRefGoogle Scholar
  175. 175.
    A. W. Kleinsasser, R. A. Buhrman, Appl. Phys. Lett. 37, 841 (1980).ADSCrossRefGoogle Scholar
  176. 176.
    H. Kroger, L. N. Smith, D. W. Jillie, Appl. Phys. Lett. 39, 280 (1981).ADSCrossRefGoogle Scholar
  177. 177.
    D. W. Jillie, L. N. Smith, H. Kroger, IEDM Technical Digest, 701 (1981).Google Scholar
  178. 178.
    J. M. Rowell, M. Gurvitch, J. Geerk, Phys. Rev. B, 24, 2278 (1981).ADSCrossRefGoogle Scholar
  179. 179.
    F. F. Tsui, IBM. J. Res. Develop. 24, 243 (1980).Google Scholar
  180. 180.
    M. J. Marcus, Proc. IEEE 69, 404 (1981).ADSCrossRefGoogle Scholar
  181. 181.
    J. Matisoo, Scientific American 242, 50 (1980).ADSCrossRefGoogle Scholar
  182. 182.
    A. V. Brown, IBM J. Res. Develop. 24, 167 (1980).Google Scholar
  183. 183.
    B. van der Hoeven, J. Vac. Sci. Technol. 18, 841 (1981).ADSGoogle Scholar
  184. 184.
    S. K. Lahiri, P. Geldermans, G. Kolb, J. Sokolowski, M. J. Palmer, IEEE Trans. Components Hybrids Manuf. Technol. CHMT-5, 166 (1982).Google Scholar
  185. 185.
    S. K. Lahiri, et al., to be published in IEEE Trans. Components Hybrids Manuf. Technol. (June 1982).Google Scholar
  186. 186.
    C. Y. Ting, K. R. Grebe, D. P. Waldman, 157th Electrochem. Soc. Meeting 80–1, 210 (1980).Google Scholar
  187. 187.
    K. R. Grebe, C. Y. Ting. D. P. Waldman, Extended Abstracts, 157th Electrochem. Soc. Meeting 80–1, 213 (1980). Josephson Computer Technology 127Google Scholar
  188. 188.
    H. C. Jones, D. J. Herrell, IBM J. Res. Develop. 24, 172 (1980).Google Scholar
  189. 189.
    J. Temmyo, H. Yoshikiyo, IEEE Trans. Microwave Theory, Techniques MTT-30, 27 (1982).Google Scholar
  190. 190.
    C. J. Anderson, M. Klein, M. B. Ketchen, submitted to the Applied Superconductivity Conference, Knoxville, TN (1982).Google Scholar
  191. 191.
    M. B. Ketchen, et al., IEEE Electron Device Lett. EDL-2, 262 (1981).Google Scholar
  192. 192.
    P. A. Moskowitz, R. W. Guernsey, J. W. Stasiak, to be published in Advances in Crygenic Engineering, New York: Plenum Press 27 (1982).Google Scholar
  193. 193.
    S. Bermon, T. Gheewala, submitted to the Applied Superconductivity Conference, Knoxville, TN (1982).Google Scholar
  194. 194.
    E. B. Flint, L. C. Jenkins, R. W. Guernsey, Refrigeration for Cryogenic Sensors and Electronic Systems, eds. J. E. Zimmerman and S. E. McCarthy, Conference held at NBS, Boulder (1980), Proceedings (page 93), issued 1981.Google Scholar
  195. 195.
    R. W. Guernsey, E. B. Flint, Refrigeration for Cryogenic Sensors and Electronic Systems, eds. J. E. Zimmerman and S. E. McCarthy, Conference held at NBS, Boulder (1980), Proceedings (page 15), issued 1981.Google Scholar
  196. 196.
    D. J. Herrell, IEEE Trans. Magn. MAG-10, 864 (1974).Google Scholar
  197. 197.
    D. J. Herrell, IEEE J. Solid-State Circuits SC-10, 360 (1975).Google Scholar
  198. 198.
    Two special issues on Josephson technology: IBM J. Res. Develop. 24 (1980), and IEEE Trans. Electron Devices ED-27 (1980), highlight details of recent achievements.Google Scholar
  199. 199.
    W. Anacker, IEEE Trans. Magn. MAG-5, 968 (1969).Google Scholar
  200. 200.
    J. C. Logue, private communication.Google Scholar
  201. 201.
    C. Mead, L. Conway, Introduction to VLSI Systems, Section 9. 9, Addison-Wesley, Series in Computer Science (1980).Google Scholar
  202. 202.
    J. Clarke, IEEE Trans. Electron Devices ED-27, 1896 (1980).Google Scholar
  203. 203.
    C. A. Hamilton, F. L. Lloyd, R. L. Peterson, J. R. Andrew, Appl. Phys. Lett. 35, 718 (1979).ADSCrossRefGoogle Scholar
  204. 204.
    S. M. Faris, Appl. Phys. Lett. 36, 1005 (1980).Google Scholar
  205. 205.
    D. B. Tuckerman, Appl. Phys. Lett. 36, 1008 (1980).Google Scholar
  206. 206.
    M. Klein, ISSCC 20, 202 (1977).Google Scholar
  207. 207.
    R. E. Harris, C. A. Hamilton, F. L. Lloyd, Appl. Phys. Lett. 35, 720 (1979).ADSCrossRefGoogle Scholar
  208. 208.
    R. L. Peterson, J. Appl. Phys. 50, 4231 (1979).ADSCrossRefGoogle Scholar
  209. 209.
    C. A. Hamilton, F. L. Lloyd, IEEE Electron Device Lett. EDL-1, 92 (1980).Google Scholar
  210. 210.
    C. A Hamilton, F. L. Lloyd, R. L. Kautz, IEEE Trans. Magn. MAG-17, 577 (1981).Google Scholar
  211. 211.
    C. A. Hamilton, F. L. Lloyd, IEEE Trans. Magn. MAG-17, 3414 (1981).Google Scholar
  212. 212.
    P. Richards, T. Shen, IEEE Trans. Electron Devices ED-27, 1909 (1980).Google Scholar
  213. 213.
    D. B. Sullivan, J. E. Zimmerman, J. T. Ives, Proc. NBS Cryocooler Conference, eds. J. E. Zimmerman, D. B. Sullivan, S. E. McCarthy, NBS Special Publication 607, 186 (1981).Google Scholar
  214. 214.
    W. A. Little, Proc. NBS Cryocooler Conference, eds. J. E. Zimmerman, T. M. Flynn, NBS Special Publication 508, (1978).Google Scholar
  215. 215.
    S. M. Faris, S. I. Raider, J. H. Greiner, R. E. Drake, A. J. Warnecke, Bull. Amer. Phys. Soc., 26, 306 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hans H. Zappe
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations