Vitamin-Responsive Genetic Abnormalities

  • S. Harvey Mudd
Part of the Advances in Nutritional Research book series (ANUR, volume 4)

Abstract

This review will focus on certain aspects of vitamin-responsive genetic disorders. To be included, a condition must be gentically determined, and its characteristic chemical and/or biochemical manifestations must be alleviated by larger than physiological amounts of a particular vitamin or by use of an unusual route of administration of that vitamin. Such conditions have recently attracted much attention from human geneticists and from those concerned clinically and biochemically with inborn errors of metabolism. Previous reviews provide adequate coverage of the clinical features of these conditions and of many details concerning the history, structure, and the biochemical role of the particular vitamins to be discussed (Frimpter et al., 1969; Mudd, 1971, 1974a, 1977; Scriver, 1973; Rosenberg, 1976). In general, these matters will be beyond the scope of this chapter. Here, emphasis will be on the general properties that characterize vitamin-responsive conditions, the mechanism or mechanisms underlying vitamin responsiveness, and the implications of our present understanding of these matters both for those concerned with individual patients with metabolic diseases and for those concerned with more general aspects of human nutrition.

Keywords

Anemia Retina Proteinuria Fenton Ornithine 

Abbreviations used

PLP

pyridoxal 5′-phosphate

OH-Cbl

hydroxocobalamin

CN-Cbl

cyanocobalamin

AdoCbl

adenosylcobalamin

MeCbl

methylcobalamin

TC II

transcobalamin II

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, F., Butler, A. M., and Bloomberg, E., 1937, Rickets resistant to vitamin D therapy, Am. J. Dis. Child. 54:529.Google Scholar
  2. Anthony, M., and McLeay, A. C., 1976, A unique case of derangement of vitamin B12 metabolism, Proc. Aust. Assoc. Neurol. 13:61.PubMedGoogle Scholar
  3. Aoki, Y., Urata, G., and Takaku, F., 1973, δ-Aminolevulinic acid synthetase in erythroblasts of patients with primary siderblastic anemia, Acta Haematol. Jpn. 86:74.Google Scholar
  4. Aoki, Y., Urata, G., Takaku, F., and Katunuma, N., 1975, A new protease inactivating δ-aminolevulinic acid synthetase in mitochondria of human bone marrow cells, Biochem. Biophys. Res. Commun. 65:567.PubMedCrossRefGoogle Scholar
  5. Balsan, S., Garabedian, M., Sorgniard, R., Holick, M. F., and DeLuca, H. F., 1975, 1,25-Dihydroxyvitamin D3 and 1,α-hydroxyvitamin D3 in children: Biologic and therapeutic effects in nutritional rickets and different types of vitamin D resistance, Pediatr. Res. 9:586.PubMedCrossRefGoogle Scholar
  6. Banno, Y., Shiotani, T., Towatari, T., Yoshikawa, D., Katsunuma, T., Afting, E.-G., and Katunuma, N., 1975, Studies on new intracellular proteases in various organs of rat. 3. Control of group-specific protease under physiological conditions, Eur. J. Biochem. 52:59.PubMedCrossRefGoogle Scholar
  7. Barber, G. W., and Spaeth, G. L., 1967, Pyridoxine therapy in homocystinuria, Lancet 2:337.CrossRefGoogle Scholar
  8. Bartlett, K., and Gompertz, D., 1976, Combined carboxylase defect: Biotin responsiveness in cultured fibroblasts, Lancet 2:804.PubMedCrossRefGoogle Scholar
  9. Bartlett, K., and Gompertz, D., 1978, Biotin activation of carboxylase activity in cultured fibroblasts from a child with a combined carboxylase defect, Clin. Chim. Acta 84:399.PubMedCrossRefGoogle Scholar
  10. Barnes, N. D., Hull, D., Balgobin, L., and Gompertz, D., 1970, Biotin-responsive prop-ionicacidaemia, Lancet 2:244.PubMedCrossRefGoogle Scholar
  11. Baumgartner, E. R., Schweizer, K., and Wick, H., 1977, Different congenital forms of defective remethylation in homocystinuria: Clinical, biochemical and morphologic studies, Pediatr. Res. 11:1015.Google Scholar
  12. Ben-Bassat, I., Feinstein, A., and Ramot, B., 1969, Selective vitamin B12 malabsorption with proteinuria in Israel, Isr. J. Med. Sci. 5:62.PubMedGoogle Scholar
  13. Blass, J. P., and Gibson, G. E., 1977, Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome, N. Engl. J. Med. 297:1367.PubMedCrossRefGoogle Scholar
  14. Blass, J. P., Avigan, J., and Uhlendorf, B.W., 1970, A defect in pyruvate decarboxylase in a child with an intermittent movement disorder, J. Clin. Invest. 49:423.PubMedCrossRefGoogle Scholar
  15. Bosron, W. F., Veitch, R. L., Lumeng, L., and Li, T.-K., 1978, Subcellular localization and identification of pyridoxal 5′-phosphate-binding proteins in rat liver, J. Biol. Chem. 253:1488.PubMedGoogle Scholar
  16. Brunette, M. G., Delvin, E., Hazel, B., and Scriver, C. R., 1972, Thiamine-responsive lactic acidosis in a patient with deficient low-K m pyruvate carboxylase activity in liver, Pediatrics 50:702.PubMedGoogle Scholar
  17. Carey, M. C., Fennelly, J. J., and FitzGerald, O., 1968, Homocystinuria. II. Subnormal serum folate levels, increased folate clearance and effects of folic acid therapy, Am. J. Med. 45:26.PubMedCrossRefGoogle Scholar
  18. Cartwright, G. E., and Deiss, A., 1975, Sideroblasts, siderocytes and sideroblastic anemia, N. Engl. J. Med. 292:185.PubMedCrossRefGoogle Scholar
  19. Christensen, J. R., 1940–1941, Three familial cases of atypical late rickets, Acta Paediatr. Scand. 28:247.CrossRefGoogle Scholar
  20. Clayton, B. E., Dobbs, R. H., and Patrick, A. D., 1967, Leigh’s subacute necrotizing encephalopathy: Clinical and biochemical study, with special reference to therapy with lipoate, Arch. Dis. Child. 42:467.PubMedCrossRefGoogle Scholar
  21. Cohen, P. A., Schneidman, K., Ginsberg-Fellner, F., Sturman, J. A., Knittle, J., and Gaull, G. E., 1973, High pyridoxine diet in the rat: Possible implications for megavitamin therapy, J. Nutr. 103:143.PubMedGoogle Scholar
  22. Danner, D. J., Davidson, E. D., and Elsas, L. J. II, 1975, Thiamine increases the specific activity of human liver branched chain α-ketoacid dehydrogenase, Nature 254:529.PubMedCrossRefGoogle Scholar
  23. Danner, D. J., Wheeler, F. B., Lemmon, S. K., and Elsas, L. J. II, 1978, In vivo and in vitro response of human branched chain α-ketoacid dehydrogenase to thiamine and thiamine pyrophosphate, Pediatr. Res. 12:235.PubMedCrossRefGoogle Scholar
  24. Edwards, Y., and Hopkinson, D. A., 1980, Are abundant proteins less variable? Nature 284:511.PubMedCrossRefGoogle Scholar
  25. Ellenbogen, L., 1975, Absorption and transport of cobalamin. Intrinsic factor and the transcobalamins, in: Cobalamin, Biochemistry and Pathophysiology (B. M. Babior, ed.), pp. 215–286, John Wiley & Sons, New York.Google Scholar
  26. Elsas, L. J., Pask, B. A., Wheeler, F. B., Perl, D. P., and Trusler, S., 1972, Classical maple syrup urine disease: Cofactor resistance, Metabolism 21:929.PubMedCrossRefGoogle Scholar
  27. Elsas, L. J. II, Miller, R. L., and Pinnell, S. R., 1978, Inherited human collagen lysyl hydroxylase deficiency: Ascorbic acid response, J. Pediatr. 92:378.PubMedCrossRefGoogle Scholar
  28. Erbe, R. W., 1979, Genetic aspects of folate metabolism, Adv. Hum. Genet. 9:293.PubMedGoogle Scholar
  29. Fenton, W. A., and Rosenberg, L. E., 1978, Mitochondrial metabolism of hydroxocobalamin: Synthesis of adenosylcobalamin by intact rat liver mitochondria, Arch. Biochem. Biophys. 189:441.PubMedCrossRefGoogle Scholar
  30. Finkelstein, J. D., Mudd, S. H., Irreverre, F., and Laster, L., 1966, Deficiencies of cystathionase and homoserine dehydratase activities in cystathionuria, Proc. Natl. Acad. Sci. U.S.A. 55:865.PubMedCrossRefGoogle Scholar
  31. Fleisher, L. D., Longhi, R. C., Tallan, H. H., and Gaull, G. E., 1978, Cystathionine β-synthase deficiency: Differences in thermostability between normal and abnormal enzyme from cultured human cells, Pediatr. Res. 12:293.PubMedCrossRefGoogle Scholar
  32. Fowler, B., Kraus, J., Packman, S., and Rosenberg, L. E., 1978, Homocystinuna. Evidence for three distinct classes of cystathionine β-synthase mutants in cultured fibroblasts, J. Clin. Invest. 61:645.PubMedCrossRefGoogle Scholar
  33. Fraser, D., and Salter, R. B., 1958, The diagnosis and management of the various types of rickets, Pediatr. Clin. North Am. 5:417.Google Scholar
  34. Fraser, D., Kooh, S. W., Kind, H. P., Holick, M. F., Tanaka, Y., and DeLuca, H. F., 1973, Pathogenesis of hereditary vitamin D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1α,25-dihydroxyvitamin D, N. Engl. J. Med. 289:817.PubMedCrossRefGoogle Scholar
  35. Freeman, J. M., Finkelstein, J. D., and Mudd, S. H., 1975, Folate-responsive homocystinuria and “schizophrenia.” A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity, N. Engl. J. Med. 292:491.PubMedCrossRefGoogle Scholar
  36. Frimpter, G. W., 1965, Cystathioninuria: Nature of the defect, Science 149:1095.PubMedCrossRefGoogle Scholar
  37. Frimpter, G. W., Haymovitz, A., and Horwith, M., 1963, Cystathionuria, N. Engl. J. Med. 268:333.PubMedCrossRefGoogle Scholar
  38. Frimpter, G. W., Andelman, R. J., and George, W. F., 1969, Vitamin B6-dependency syndromes. New horizons in nutrition, Am. J. Clin. Nutr. 22:794.PubMedGoogle Scholar
  39. Gehrmann, G., 1965, Pyridoxine-responsive anaemias, Br. J. Haematol. 11:86.PubMedCrossRefGoogle Scholar
  40. Gibbs, D. A., and Watts, R. W. E., 1970, The action of pyridoxine in primary hyperoxaluria, Clin. Sci. 38:277.PubMedGoogle Scholar
  41. Gimpert, E., Jakob, M., and Hitzig, W. H., 1975, Vitamin B12 transport in blood. I. Congenital deficiency of transcobalamin II, Blood 45:71.PubMedGoogle Scholar
  42. Gompertz, D., Storrs, C. N., Bau, D. C. K., Peters, T. J., and Hughes, E. A., 1970, Localization of enzyme defect in propionicacidemia, Lancet 1:1140.PubMedCrossRefGoogle Scholar
  43. Gompertz, D., Draffan, G. H., Watts, J. L., and Hull, D., 1971, Biotin-responsive β-methylcrotonylglycinuria, Lancet 2:22.PubMedCrossRefGoogle Scholar
  44. Goodman, S. I., Moe, P. G., Hammond, K. B., Mudd, S. H., and Uhlendorf, B. W., 1970, Homocystinuria with methylmalonic aciduria: Two cases in a sibship, Biochem. Med. 4:500.PubMedCrossRefGoogle Scholar
  45. Goodman, S. I., Keyser, A. J., Mudd, S. H., Schulman, J. D., Turse, H., and Lewy, J., 1972, Responsiveness of congenital methylmalonic aciduria to derivatives of vitamin B12, Pediatr. Res. 6:138.Google Scholar
  46. Gräsbeck, R., and Kvist, G., 1967, Defecto congenito y selectivo de absorcion de la vitamina B12 con proteinuria, Rev. Clin. Esp. 106:448.PubMedGoogle Scholar
  47. Gräsbeck, R., Gordin, R., Kantero, I., and Kuhlback, B., 1960, Selective vitamin B12 malabsorption and proteinuria in young people, Acta Med. Scand. 167:289.PubMedCrossRefGoogle Scholar
  48. Gravel, R. A., Mahoney, M. J., Ruddle, F. H., and Rosenberg, L. E., 1975, Genetic complementation in heterokaryons of human fibroblasts defective in cobalamin metabolism, Proc. Natl. Acad. Sci. U.S.A. 72:3181.PubMedCrossRefGoogle Scholar
  49. Hakami, N., Neiman, P. E., Canellos, G. P., and Lazerson, J., 1971, Neonatal megaloblastic anemia due to inherited transcobalamin II deficiency in two siblings, N. Engl. J. Med. 285:1163.PubMedCrossRefGoogle Scholar
  50. Harris, H., 1975, The Principles of Human Biochemical Genetics, North-Holland, Amsterdam.Google Scholar
  51. Harris, H., 1976, Molecular evolution: The neutralist-selectionist controversy, Fed. Proc. 35:2079.PubMedGoogle Scholar
  52. Harris, J. W., Whittington, R. M., Weisman, R., Jr., and Horrigan, D. L., 1956, Pyridoxine responsive anemia in the human adult, Proc. Soc. Exp. Biol. Med. 91:427.PubMedGoogle Scholar
  53. Haurani, F. I., Hall, C. A., and Rubin, R., 1979, Megaloblastic anemia as a result of an abnormal transcobalamin II (Cardeza), J. Clin. Invest. 64:1253.PubMedCrossRefGoogle Scholar
  54. Hillman, R. E., Keating, J. P., and Williams, J. C., 1978, Biotin-responsive proprionic acidemia presenting as the rumination syndrome, J. Pediatr. 92:439.PubMedCrossRefGoogle Scholar
  55. Hitzig, W. H., Dohmann, U., Pluss, H. J., and Vischer, D., 1974, Hereditary transcobalamin II deficiency: Clinical findings in a new family, J. Pediatr. 85:622.PubMedCrossRefGoogle Scholar
  56. Hommes, F. A., Polman, H. A., and Reerink, J. D., 1968, Leigh’s encephalomyelopathy: An inborn error of gluconeogenesis, Arch. Dis. Child. 43:423.PubMedCrossRefGoogle Scholar
  57. Hunt, A. D., Jr., Stokes, J., Jr., McCrory, W. W., and Stroud, H. H., 1954, Pyridoxine dependency: Report of a case of intractable convulsions in an infant controlled by pyridoxine, Pediatrics 13:140.PubMedGoogle Scholar
  58. Imerslund, O., 1960, Idiopathic chronic megaloblastic anemia in children, Acta Paediatr. Scand. [Suppl.] 119:1.Google Scholar
  59. Katunuma, N., Kominami, E., Kobayashi, K., Banno, Y., Suzuki, K., Chichibu, K., Hamaguchi, Y., and Katsunuma, T., 1975, Studies on new intracellular proteases in various organs of rat. 1. Purification and comparison of their properties, Eur. J. Biochem. 52:37.PubMedCrossRefGoogle Scholar
  60. Katz, M., Lee, S. K., and Cooper, B. A., 1972, Vitamin B12 malabsorption due to biologically inert intrinsic factor, N. Engl. J. Med. 287:425.PubMedCrossRefGoogle Scholar
  61. Katz, M., Mahlman, C. S., and Allen, R. H., 1974, Isolation and characterization of an abnormal human intrinsic factor, J. Clin. Invest. 53:1274.PubMedCrossRefGoogle Scholar
  62. Khairallah, E. A., and Pitot, H. C., 1968, Studies on the turnover of serine dehydrase: Amino acid induction, glucose repression, and pyridoxine stabilization, in: Symposium on Pyridoxal Enzymes (K. Yamada, N. Katunuma, and H. Wada, eds.), pp. 159–164, Maruzen, Tokyo.Google Scholar
  63. Kim, Y. J., and Rosenberg, L. E., 1974, On the mechanism of pyridoxine responsive homocystinuria. II. Properties of normal and mutant cystathionine β-synthase from cultured fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 71:4821.PubMedCrossRefGoogle Scholar
  64. Knapp, A., 1960, Uber eine neue hereditare von vitamin B6 abhangige Storung im Tryptophanstoffwechsel, Clin. Chim. Acta 5:6.PubMedCrossRefGoogle Scholar
  65. Koch, J., Stokstad, E. L. R., Williams, H. E., and Smith, L. H., Jr., 1967, Deficiency of 2-oxoglutarate: glyoxylate carboligase activity in primary hyperaluria, Proc. Natl. Acad. Sci. U.S.A. 57:1123.PubMedCrossRefGoogle Scholar
  66. Kominami, E., and Katunuma, N., 1976, Studies on new intracellular proteases in various organs of rats. Participation of proteases in degradation of ornithine aminotransferase in vitro and in vivo, Eur. J. Biochem. 62:425.CrossRefGoogle Scholar
  67. Kominami, E., Kobayashi, K., Kominami, S., and Katunuma, N., 1972, Properties of a specific protease for pyridoxal enzymes and its biological role, J. Biol. Chem. 247:6848.PubMedGoogle Scholar
  68. Kominami, E., Banno, Y., Chichibu, K., Shiotani, T., Hamaguchi, Y., and Katunuma, N., 1975, Studies on new intracellular proteases in various organs of rat. 2. Mode of limited proteolysis, Eur. J. Biochem. 52:51.PubMedCrossRefGoogle Scholar
  69. Komrower, G. M., and Sardharwalla, I. B., 1971, The dietary treatment of homocystinuria, in: Inherited Disorders of Sulphur Metabolism (N. A. J. Carson and D. N. Raine, eds.), pp. 254–263, Churchill Livingstone, London.Google Scholar
  70. Krane, S. M., Pinnell, S. R., and Erbe, R. W., 1972, Lysyl-protocollagen hydroxylase deficiency in fibroblasts from siblings with hydroxylysine-deficient collagen, Proc. Natl. Acad. Sci. U.S.A. 69:2899.PubMedCrossRefGoogle Scholar
  71. Lampkin, B. C., and Maurer, A. M., 1967, Congenital pernicious anemia with coexistent transitory malabsorption of vitamin B12, Blood 30:495.PubMedGoogle Scholar
  72. Lanzkowsky, P., 1970, Congenital malabsorption of folate, Am. J. Med. 48:580.PubMedCrossRefGoogle Scholar
  73. Lanzkowsky, P., 1977, Congenital malabsorption of folate associated with mental retardation, in: Nutritional Deficiency Secondary to Inborn Errors of Metabolism Its Relation to Physical and Mental Development (N. Shimazono and T. Arakawa, eds.), pp. 213–226, Japanese Malnutrition Panel of the U.S.-Japan Cooperative Medical Science Program, c/o Wayo Women’s University, Ichikawa, Chiba Prefecture, 272 Japan.Google Scholar
  74. Lanzkowsky, P., Erlandson, M. E., and Bezan, A. I., 1969, Isolated defect of folic acid absorption associated with mental retardation and cerebral calcification, Blood 34:452.PubMedGoogle Scholar
  75. Lee, K.-L., Darke, P. L., and Kenney, F. T., 1977, Role of coenzyme in aminotransferase turnover, J. Biol. Chem. 252:4958.PubMedGoogle Scholar
  76. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  77. Li, T.-K., Lumeng, L., and Veitch, R. L., 1974, Regulation of pyridoxal 5′-phosphate metabolism in liver, Biochem. Biophys. Res. Commun. 61:677.PubMedCrossRefGoogle Scholar
  78. Linnell, J. C., Matthews, D. M., Mudd, S. H., Uhlendorf, B. W., and Wise, I. J., 1976, Cobalamins in fibroblasts cultured from normal control subjects and patients with methylmalonic aciduria, Pediatr. Res. 10:179.PubMedCrossRefGoogle Scholar
  79. Lipson, M. H., Kraus, J., and Rosenberg, L. E., 1980, Affinity of cystathionine β-synthase for pyridoxal 5′-phosphate in cultured cells: A mechanism for pyridoxine responsive homocystinuria, J. Clin. Invest. 66:188.PubMedCrossRefGoogle Scholar
  80. Litwak, G., and Rosenfield, S., 1973, Coenzyme dissociation, a possible determinant of short half-life of inducible enzymes in mammalian liver, Biochem. Biophys. Res. Commun. 52:181.CrossRefGoogle Scholar
  81. Lonsdale, D., Faulkner, W. R., Price, J. M., and Smeby, R. R., 1969, Intermittent cerebellar ataxia associated with hyperpyruvic acidemia, hyperphenylalaninemia and hyperalaninuria, Pediatrics 43:1025.PubMedGoogle Scholar
  82. Luhby, A. L., Eagle, F. J., Roth, E., and Cooperman, J. M., 1961, Relapsing megaloblastic anemia in an infant due to a specific defect in gastrointestinal absorption of folic acid, Am. J. Dis. Child. 102:482.Google Scholar
  83. Lumeng, L., and Li, T.-K., 1975, Characterization of the pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate hydrolase activity in rat liver, J. Biol. Chem. 250:8126.PubMedGoogle Scholar
  84. MacKenzie, I. L., Donaldson, R. M., Jr., Trier, J. S., and Mathan, V. I., 1972, Ileal mucosa in familial selective vitamin B12 malabsorption, N. Engl. J. Med. 286:1021.PubMedCrossRefGoogle Scholar
  85. Mahoney, M. J., and Rosenberg, L. E., 1975, Inborn errors of cobalamin metabolism, in: Cobalamin, Biochemistry and Pathophysiology (B. M. Babior, ed.), pp. 369–402, John Wiley & Sons, New York.Google Scholar
  86. Mahoney, M. J., Rosenberg, L. E., Mudd, S. H., and Uhlendorf, B. W., 1971, Defective metabolism of vitamin B12 in fibroblasts from patients with methylmalonicaciduria, Biochem. Biophys. Res. Commun. 44:375.PubMedCrossRefGoogle Scholar
  87. Mahoney, M. J., Hart, A. C., Steen, V. D., and Rosenberg, L. E., 1975, Methylmalonicacidemia: Biochemical heterogeneity in defects of 5′-deoxyadenosylcobalamin synthesis, Proc. Natl. Acad. Sci. U.S.A. 72:2799.PubMedCrossRefGoogle Scholar
  88. Mahoney, M. J., Nicholson, J. F., Hart, A. C., Rosenberg, L. E., and Challop, R., 1976, Cobalamin (vitamin B12) toxicity in methylmalonicacidemia, Pediatr. Res. 10:368.Google Scholar
  89. Mason, D. Y., and Emerson, P. M., 1973, Primary acquired sideroblastic anaemia: Response to treatment with pyridoxal-5-phosphate, Br. Med. J. 1:389.PubMedCrossRefGoogle Scholar
  90. McConkey, E. H., Taylor, B. J., and Phan, D., 1979, Human heterozygosity: A new estimate, Proc. Natl. Acad. Sci. U.S.A. 76:6500.PubMedCrossRefGoogle Scholar
  91. Mclntyre, O. R., Sullivan, L. W., Jeffries, G. H., and Silver, R. H., 1965, Pernicious anemia in childhood, N. Engl. J. Med. 272:981.CrossRefGoogle Scholar
  92. McNicholl, B., and Egan, B., 1968, Congenital pernicious anemia: Effects on growth, brain, and absorption of B12, Pediatrics 42:149.PubMedGoogle Scholar
  93. Mellman, I., Huntington, F. W., Youngdahl-Turner, P., and Rosenberg, L. E., 1979, Cobalamin coenzyme synthesis in normal and mutant human fibroblasts. Evidence for a processing enzyme activity deficient in cbl C cells, J. Biol. Chem. 254:11847.PubMedGoogle Scholar
  94. Morrow, G. III, and Barness, L. A., 1972, Combined vitamin responsiveness in homocystinuria, J. Pediatr. 81:946.PubMedCrossRefGoogle Scholar
  95. Morrow, G. III, Resvin, B., Clark, R., Lebowitz, J., and Whelan, D. T., 1978, A new variant of methylmalonic acidemia—defective coenzyme-apoenzyme binding in cultured fibroblasts, Clin. Chim. Acta 85:67.PubMedCrossRefGoogle Scholar
  96. Mudd, S. H., 1971, Pyridoxine-responsive genetic disease, Fed. Proc. 30:970.PubMedGoogle Scholar
  97. Mudd, S. H., 1974a, Inborn errors of metabolism. Vitamin-responsive genetic disease, J. Clin. Pathol. [Suppl.] 8:38.Google Scholar
  98. Mudd, S. H., 1974b, Homocystinuria and homocysteine metabolism: Selected aspects, in: Heritable Disorders of Amino Acid Metabolism (W. L. Nyhan, ed.), pp. 429–451, John Wiley & Sons, New York.Google Scholar
  99. Mudd, S. H., 1977, Cobalamin-responsive genetic disorders, in: Nutritional Deficiency Secondary to Inborn Errors of Metabolism Its Relation to Physical and Mental Development (N. Shimazono and T. Arakawa, eds.), pp. 251–265, Japanese Malnutrition Panel of the U.S.-Japan Cooperative Medical Science Program, c/o Wayo Women’s University, Ichikawa, Chiba Prefecture, 272 Japan.Google Scholar
  100. Mudd, S. H., and Levy, H. L., 1978, Disorders of transsulfuration, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 458–503, McGraw-Hill, New York.Google Scholar
  101. Mudd, S. H., Finkelstein, J. D., Irreverre, F., and Laster, L., 1964, Homocystinuria: An enzymatic defect, Science 143:1443.PubMedCrossRefGoogle Scholar
  102. Mudd, S. H., Levy, H. L., and Abeles, R. H., 1969, A derangement in B12 metabolism leading to homocystinemia, cystathioninemia, and methylmalonic aciduria, Biochem. Biophys. Res. Commun. 35:121.PubMedCrossRefGoogle Scholar
  103. Mudd, S. H., Uhlendorf, B. W., Hinds, K. R., and Levy, H. L., 1970a, Deranged B12 metabolism: Studies of fibroblasts grown in tissue culture, Biochem. Med. 4:215.PubMedCrossRefGoogle Scholar
  104. Mudd, S. H., Edwards, W. A., Loeb, P. M., Brown, M. S., and Laster, L., 1970b, Homocystinuria due to cystathionine synthase deficiency: The effect of pyridoxine, J. Clin. Invest. 49:1762.PubMedCrossRefGoogle Scholar
  105. Mudd, S. H., Uhlendorf, B. W., Freeman, J. M., Finkelstein, J. D., and Shih, V. E., 1972, Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity, Biochem. Biophys. Res. Commun. 46:905.PubMedCrossRefGoogle Scholar
  106. Murthy, P. N. A., and Mistry, S. P., 1974, In vitro synthesis of propionyl-CoA holocarboxylase by a partially purified mitochondrial preparation from biotin-deficient chicken liver, Can. J. Biochem. 52:800.CrossRefGoogle Scholar
  107. O’Donnell, J. J., Sandman, P. P., and Martin, S. R., 1978, Gyrate atrophy of the retina: Inborn error of L-ornithine: 2-oxoacid aminotransferase, Science 200:200.PubMedCrossRefGoogle Scholar
  108. Perry, T. L., Hansen, S., Love, D. L., Crawford, L. E., and Tischler, B., 1968, Treatment of homocystinuria with a low-methionine diet, supplemental cystine, and a methyl donor, Lancet 2:474.PubMedCrossRefGoogle Scholar
  109. Pletsch, Q. A., and Coffey, J. W., 1971, Intracellular distribution of radioactive vitamin B12 in rat liver, J. Biol.Chem. 246:4619.Google Scholar
  110. Poole, J. R., Mudd, S. H., Conerly, E. B., and Edwards, W. A., 1975, Homocystinuria due to cystathionine synthase deficiency. Studies of nitrogen balance and sulfur excretion, J. Clin. Invest. 55:1033.PubMedCrossRefGoogle Scholar
  111. Rasmussen, H., and Anast, C., 1978, Familial hypophosphatemic (vitamin D-resistent) rickets and vitamin D-dependent rickets, in: The Metabolic Basic of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1537–1562, McGraw-Hill, New York.Google Scholar
  112. Rogers, L. E., Porter, F. S., and Sidbury, J. B., 1969, Thiamine-responsive megaloblastic anemia, J. Pediatr. 74:494.PubMedCrossRefGoogle Scholar
  113. Rosenberg, L. E., 1976, Vitamin-responsive inherited metabolic disorders, Adv. Hum. Genet. 6:1.PubMedGoogle Scholar
  114. Rosenberg, L. E., 1978, Disorders of propionate, methylmalonate, and cobalamin metabolism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 411–429, McGraw-Hill, New York.Google Scholar
  115. Rosenberg, L. E., Lilljeqvist, A.-C., and Hsia, Y. E., 1968, Methylmalonic aciduria: Metabolic block localization and vitamin B12 dependency, Science 162:805.PubMedCrossRefGoogle Scholar
  116. Rosenberg, L. E., Lilljeqvist, A.-C., Hsia, Y. E., and Rosenbloom, F. M., 1969, Vitamin B12 dependent methylmalonicaciduria: Defective B12 metabolism in cultured fibroblasts, Biochem. Biophys. Res. Commun. 37:607.PubMedCrossRefGoogle Scholar
  117. Rosenblatt, D. S., Cooper, B. A., Lue-Shing, S., Wong, P. W. K., Berlow, S., Narisawa, K., and Baumgartner, R., 1979, Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency, J. Clin. Invest. 63:1019.PubMedCrossRefGoogle Scholar
  118. Santiago-Borrero, P. J., Santini, R., Jr., Perez-Santiago, E., and Maldonado, N., 1973, Congenital isolated defect of folic acid absorption, J. Pediatr. 82:450.PubMedCrossRefGoogle Scholar
  119. Schulman, J. D., Lustberg, T. J., Kennedy, J. L., Museles, M., and Seegmiller, J. E., 1970, A new variant of maple syrup urine disease (branched chain ketoaciduria), Am. J. Med. 49:118.PubMedCrossRefGoogle Scholar
  120. Schulman, J. D., Mudd, S. H., Schneider, J. A., Sheetz, M., Spielberg, S. P., Boxer, L. A., Oliver, J., and Corash, L. M., 1980a, Inborn errors of glutathione and sulfur amino acid metabolism, Ann. Intern. Med. 93:330.Google Scholar
  121. Schulman, J. D., Corash, L., Bartsocas, C., Spielberg, S., Boxer, L., Sheetz, M., Steinherz, R., and Papadatos, C., 1980b, in: Progress in Clinical and Biological Research, Vol. 34, Management of Genetic Disorders (C. Papadatos and C Bartsocas, eds.), pp. 381–387, Alan R. Liss, New York.Google Scholar
  122. Scott, C. R., Hakami, N., Teng, C. C., and Sagerson, R. N., 1972, Hereditary transcobalamin II deficiency: The role of transcobalamin II in vitamin B12-mediated reactions, J. Pediatr. 81:1106.PubMedCrossRefGoogle Scholar
  123. Scriver, C. R., 1964, Pyridoxine-dependent seizures in infancy (a metabolically and genetically determined form of epilepsy), in: Yearbook of Pediatrics (S. S. Gellis, ed.), pp. 44–48, Year Book, Chicago.Google Scholar
  124. Scriver, C. R., 1973, Progress in endocrinology and metabolism. Vitamin-responsive inborn errors of metabolism, Metab. Clin. Exp. 22:1319.PubMedCrossRefGoogle Scholar
  125. Scriver, C. R., and Hutchison, J. H., 1963, The vitamin B6 deficiency syndrome in human infancy: Biochemical and clinical observations, Pediatrics 31:240.PubMedGoogle Scholar
  126. Scriver, C. R., and Whelan, D. T., 1969, Glutamic acid decarboxylase (GAD) in mammalian tissue outside the central nervous system, and its possible relevance to heredity vitamin B6 dependency with seizures, Ann. N.Y. Acad. Sci. 166:83.PubMedCrossRefGoogle Scholar
  127. Scriver, C. R., MacKenzie, S., Clow, C. L., and Delvin, E., 1971, Thiamine-responsive maple syrup urine disease, Lancet 1:310.PubMedCrossRefGoogle Scholar
  128. Shih, V. E., Salam, M. Z., Mudd, S. H., Uhlendorf, B. W., and Adams, R. D., 1972, A new form of homocystinuria due to N5,10-methylenetetrahydrofolate reductase deficiency, Pediatr. Res. 6:135.CrossRefGoogle Scholar
  129. Shih, V. E., Berson, E. L., Mandell, R., and Schmidt, S. Y., 1978, Ornithine ketoacid transaminase deficiency in gyrate atrophy of the choroid and retina, Am. J. Hum. Genet. 30:174.PubMedGoogle Scholar
  130. Smith, L. H., Jr., and Williams, H. E., 1967, Treatment of primary hyperoxaluria, Mod. Treat. 4:522.PubMedGoogle Scholar
  131. Snape, B. M., Badawy, A. A.-B., and Evans, M., 1980, Stabilization of rat liver tyrosine aminotransferase in vivo by pyridoxine administration, Biochem. J. 186:625.PubMedGoogle Scholar
  132. Spielberg, S. P., Boxer, L. A., Corash, L. M., and Schulman, J. D., 1979, Improved erythrocyte survival with high-dose vitamin E in chronic hemolyzing G6PD and glutathione synthetase deficiency, Ann. Intern. Med. 90:53.PubMedGoogle Scholar
  133. Tada, K., Yokayama, Y., Nakagawa, H., Yoshida, T., and Arakawa, T., 1967, Vitamin B6-dependent xanthurenic aciduria, Tokohu J. Exp. Med. 93:115.CrossRefGoogle Scholar
  134. Takki, K., 1974, Gyrate atrophy of the choroid and retina associated with hyperornithinaemia, Br. J. Ophthamol. 58:3.CrossRefGoogle Scholar
  135. Uhlendorf, B. W., Conerly, E. B., and Mudd, S. H., 1973, Homocystinuria: Studies in tissue culture, Pediatr. Res. 7:645.PubMedCrossRefGoogle Scholar
  136. Walker, G. A., Murphy, S., and Huennekens, F. M., 1969, Enzymatic conversion of vitamin B12a to adenosyl-B12. Evidence for the existence of two separate reducing systems. Arch. Biochem. Biophys. 134:95.PubMedCrossRefGoogle Scholar
  137. Walton, K. E., Styer, D., and Gruenstein, E. I., 1979, Genetic polymorphism in normal human fibroblasts as analyzed by two-dimensional Polyacrylamide gel electrophoresis, J. Biol. Chem. 254:7951.PubMedGoogle Scholar
  138. Weleber, R. G., Kennaway, N. G., and Buist, N. R. M., 1978, Vitamin B6 in management of gyrate atrophy of choroid and retina, Lancet 2:1213.PubMedCrossRefGoogle Scholar
  139. Weyler, W., Sweetman, L., Maggio, D. C., and Nyhan, W. L., 1977, Deficiency of propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase in a patient with methylcrotonylglycinuria, Clin. Chim. Acta 76:321.PubMedCrossRefGoogle Scholar
  140. Willard, H. F., and Rosenberg, L. E., 1979a, Inborn errors of cobalamin metabolism: Effect of cobalamin supplementation in culture on methylmalonyl CoA mutase activity in normal and mutant human fibroblasts, Biochem. Genet. 17:57.PubMedCrossRefGoogle Scholar
  141. Willard, H. F., and Rosenberg, L. E., 1979b, Inherited deficiencies of methylmalonyl CoA mutase activity: Biochemical and genetic studies in cultured skin fibroblasts, in: Models for the Study of Inborn Errors of Metabolism (F. A. Hommes, ed.), pp. 297–310, Elsevier, New York.Google Scholar
  142. Willard, H. F., Mellman, I. S., and Rosenberg, L. E., 1978, Genetic complementation among inherited deficiencies of methylmalonyl CoA mutase activity: Evidence for a new class of human cobalamin mutant, Am. J. Hum. Genet. 30:1.PubMedGoogle Scholar
  143. Williams, H. E., and Smith, L. H., Jr., 1978, Primary hyperoxaluria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 182–204, McGraw-Hill, New York.Google Scholar
  144. Wolf, B., 1980, Molecular basis for genetic complementation in propionyl CoA carboxylase defi ciency, Exp. Cell Res. 125:502.PubMedCrossRefGoogle Scholar
  145. Wong, P. W. K., Justice, P., Smith, G. F., and Hsia, D. Y. Y., 1972, A case of classical maple syrup urine disease “thiamine non-responsive,” Clin. Genet. 3:27.PubMedCrossRefGoogle Scholar
  146. Wong, P. W. K., Justice, P., Hruby, M., Weiss, E. B., and Diamond, E., 1977, Folic acid nonresponsive homocystinuria due to methylenetetrahydrofolate reductase deficiency, Pediatrics 59:749.PubMedGoogle Scholar
  147. Yoshida, T., Tada, K., and Arakawa, T., 1971, Vitamin B6-dependency of glutamic acid decarboxylase in the kidney from a patient with vitamin B6 dependent convulsion, Tohoku J. Exp. Med. 104:195.PubMedCrossRefGoogle Scholar
  148. Youngdahl-Turner, P., Rosenberg, L. E., and Allen, R. H., 1978, Binding and uptake of trans-cobalamin II by human fibroblasts, J. Clin. Invest. 61:133.PubMedCrossRefGoogle Scholar
  149. Youngdahl-Turner, P., Mellman, I. S., Allen, R. H., and Rosenberg, L. E., 1979, Protein mediated vitamin uptake. Adsorptive endocytosis of the transcobalamin II-cobalamin complex by cultured human fibroblasts, Exp. Cell. Res. 118:127.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • S. Harvey Mudd
    • 1
  1. 1.Laboratory of General and Comparative BiochemistryNational Institute of Mental HealthBethesdaUSA

Personalised recommendations