Metabolism of Hydrogen Selenide and Methylated Selenides

  • Howard E. Ganther
Part of the Advances in Nutritional Research book series (ANUR, volume 2)

Abstract

Inorganic forms of selenium are readily metabolized to a variety of or-ganoselenium compounds in microorganisms, plants, and animals. The metabolism of selenium may either enhance or reduce the biological activity of this element. Nutritionally active inorganic selenium compounds, such as sodium selenite or sodium selenate, can be converted to physiologically active forms of selenium such as the selenoenzyme, GSH (glutathione) peroxidase. Toxic levels of selenite or selenate can be detoxified by the formation of methylated selenides that are readily excreted and usually less toxic.

Keywords

Toxicity Glutathione Arsenic NADPH Thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agenäs, L.-B., 1973, Selenides and their derivatives, in Organic Selenium Compounds. Their Chemistry and Biology (D. L. Klayman and W. H. H. Günther, eds.), pp. 173–222, Wiley-Interscience, New York.Google Scholar
  2. Asher, C. J., Evans, C. S., and Johnson, C. M., 1967, Collection and partial characterization of volatile selenium compounds from Medicago Sativa L., Aust. J. Biol. Sci. 20:737.Google Scholar
  3. Bagnall, K. W., 1973, Selenium, tellurium and polonium, in Comprehensive Inorganic Chemistry (J. C. Bailar, Jr., H. F. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, eds.), vol. 2, pp. 935–1008, Pergamon, Oxford.Google Scholar
  4. Benes, J., and Prochazkova, V., 1967, Separation of some selenides, sulfides, and ethers by gas chromatography, J. Chromatogr. 29:239.CrossRefGoogle Scholar
  5. Bremer, J., and Greenberg, D. M., 1961, Enzymic methylation of foreign sulfhydryl compounds, Biochim. Biophys. Acta, 46:217.CrossRefGoogle Scholar
  6. Bremer, J., and Natori, Y., 1960, Behavior of some selenium compounds in transmethylation, Biochim. Biophys. Acta, 44:367.CrossRefGoogle Scholar
  7. Brooker, L. G. S., Ford, J. A., Jr., and Van Lare, E. J., 1973, Heterocyclic selenium compounds. Selenium-containing dyes, in Organic Selenium Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Günther, eds.), pp. 507–530, Wiley-Interscience, New York.Google Scholar
  8. Burk, R. F., Foster, K. A., Greenfield, P. M., and Kiker, K. W., 1974, Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein, Proc. Soc. Exp. Biol. Med. 145:782.Google Scholar
  9. Byard, J. L., 1969, Trimethyl selenide. A urinary metabolite of selenite, Arch. Biochem. Biophys. 130:556.CrossRefGoogle Scholar
  10. Caygill, C. P. J., Lucy, J. A., and Diplock, A. T., 1971, The effect of vitamin E on the intracellular distribution of the different oxidation states of selenium in rat liver, Biochem. J., 125:407.Google Scholar
  11. Challenger, F., 1935, The biological methylation of compounds of arsenic and selenium, Chem. Ind. 54:657.CrossRefGoogle Scholar
  12. Challenger, F., 1951, Biological methylation, Adv. Enzymol. Biochem. 12:429.Google Scholar
  13. Chau, Y. K., Wong, P. T. S., and Goulden, P. D., 1975, Gas-chromatography-atomic absorption method for the determination of dimethyl selenide and dimethyl diselenide, Anal. Chem. 47:2279.CrossRefGoogle Scholar
  14. Cone, J. E., Del Rio, R. F., Davis, J. N., and Stadtman, T. C., 1976, Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium component, Proc. Natl. Acad. Sci. USA, 8:2659.CrossRefGoogle Scholar
  15. Cooper, W. C., and Glover, J. R., 1974, The toxicology of selenium and its compounds, in Selenium (R. Zingaro and W. C. Cooper, eds.), pp. 654–674, Van Nostrand Reinhold, New York.Google Scholar
  16. Cummins, L. M., and Martin, J. L., 1967, Are selenocystine and selenomethionine synthesized in vivo from sodium selenite in mammals? Biochemistry 6:3162.CrossRefGoogle Scholar
  17. Dilworth, G. L., and Bandurski, R. S., 1977, Activation of selenate by adenosine 5’-triphosphate sulfurylase from Saccharomyces cerevisiae, Biochem. J. 163:521.Google Scholar
  18. Diplock, A. T., 1974, A possible role for trace amounts of selenium and vitamin E in the electrontransfer system of rat liver microsomes, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 147–160, University Park Press, Baltimore.Google Scholar
  19. Diplock, A. T., 1976, Metabolic aspects of selenium action and toxicity, Crit. Rev. Toxicol. 4:271.Google Scholar
  20. Diplock, A. T., Baum, H., and Lucy, J. A., 1971, The effect of vitamin E on the oxidation state of selenium in rat liver, Biochem. J. 123:721.Google Scholar
  21. Diplock, A. T., Caygill, C. P. J., Jeffrey, E. H., and Thomas, C., 1973, The nature of the acid-volatile selenium in the liver of the male rat, Biochem. J. 134:283.Google Scholar
  22. Evans, G. S., and Johnson, C. M., 1966, The separation of some alkylselenium compounds by gas chromatography, J. Chromatogr. 21:202.CrossRefGoogle Scholar
  23. Everett, G. A., and Holley, R. W., 1961, Effect of minerals on amino acid incorporation by a rat-liver preparation, Biochim. Biophys. Acta 46:390.CrossRefGoogle Scholar
  24. Fleming, R. W., and Alexander, M., 1972, Dimethylselenide and dimethyltelluride formation by a strain of Penicillium, Appl. Microbiol. 24:424.Google Scholar
  25. Flohe, L., and Günzler, W. A., 1974, Glutathione peroxidase, in Glutathione (L. Flohe, H. Benohr, H. Sies, H. D. Waller, and A. Wendel, eds.), pp. 132–145, Academic Press, New York.Google Scholar
  26. Flohe, L., Günzler, W. A., and Ladenstein, R., 1976, Glutathione peroxidase, in Glutathione: Metabolism and Function (I. M. Arias and W. B. Jacoby, eds.), pp. 115–138, Raven Press, New York.Google Scholar
  27. Ganther, H. E., 1966, Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts, Biochemistry 5:1089.CrossRefGoogle Scholar
  28. Ganther, H. E., 1968, Selenotrisulfides. Formation by the reaction of thiols with selenious acid, Biochemistry 7:2898.CrossRefGoogle Scholar
  29. Ganther, H. E., 1971, Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase, Biochemistry 10:4089.CrossRefGoogle Scholar
  30. Ganther, H. E., 1974, Biochemistry of selenium, in Selenium (R. A. Zingaro and W. C. Cooper, eds.), pp. 546–614, Van Nostrand Reinhold, New York.Google Scholar
  31. Ganther, H. E. 1975, Selenoproteins, Chemica Scr. 8A:79.Google Scholar
  32. Ganther, H. E., and Baumann, C. A., 1962, Selenium metabolism. I. Effects of diet, arsenic, and cadmium, J. Nutr. 77:210.Google Scholar
  33. Ganther, H. E., and Corcoran, C., 1969, Selenotrisulfides. II. Cross-linking of reduced pancreatic ribonuclease with selenium, Biochemistry 8:2557.CrossRefGoogle Scholar
  34. Ganther, H. E., and Hsieh, H. S., 1974, Mechanisms for the conversion of selenite to selenides in mammalian tissues, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 339–353, University Park Press, Baltimore.Google Scholar
  35. Ganther, H. E., Levander, O. A., and Baumann, C. A., 1966, Dietary control of selenium volatilization in the rat, J. Nutr. 88:55.Google Scholar
  36. Gasiewicz, T. A., and Smith, J. C., 1976, Interactions of cadmium and selenium in rat plasma in vivo and in vitro, Biochim. Biophys. Acta 428:113.CrossRefGoogle Scholar
  37. Gasiewicz, T. A., and Smith, J. C., 1977, Similar properties of cadmium and selenium complex formed in rat plasma in vivo and in vitro, Fed. Proc. 36:1152.Google Scholar
  38. Godwin, D. O., and Fuss, C. N., 1972, The entry of selenium into rabbit protein following the administration of Na2 75SeO3, Aust. J. Biol. Sci. 25:865.Google Scholar
  39. Hiilen, L. W., and Werner, R. L., 1973, Correlation of retention index data for dimethyl polysulfides, poly selenides, and related thiaselena-alkanes, J. Chromatogr. 79:318.CrossRefGoogle Scholar
  40. Hoffman, J. L., 1977, Selenite toxicity, depletion of liver S-adenosylmethionine, and inactivation of methionine adenosyltransferase, Arch. Biochem. Biophys. 179:136.CrossRefGoogle Scholar
  41. Hsieh, H. S., 1974, Mechanisms for the biosynthesis of dimethyl selenide from sodium selenite in the rat, Ph.D. thesis, University of Wisconsin, Madison.Google Scholar
  42. Hsieh, H. S., and Ganther, H. E., 1975, Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry 14:1632.CrossRefGoogle Scholar
  43. Hsieh, H. E., and Ganther, H. E., 1976, Effects of stock or purified diet on rat liver enzymes involved in the synthesis of dimethyl selenide, J. Nutr. 106:1577.Google Scholar
  44. Hsieh, H. S., and Ganther, H. E., 1977, Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free system, Biochim. Biophys. Acta 497:205.CrossRefGoogle Scholar
  45. Jenkins, K. J., and Hidiroglou, M., 1972, Comparative metabolism of 75Se-selenite, 75Se-selenate, and 75Se-selenomethionine in bovine erythrocytes, Can. J. Physiol. Pharmacol. 50:927.CrossRefGoogle Scholar
  46. Kalouskova, J., Parizek, J., Pavlik, L., and Benes, J., 1977, Studies on the mechanism of sex-linked difference in the toxicity and retention of methylated selenium compounds, in Trace Element Metabolism in Man and Animals, Vol. 3 (M. Kirchgessner, ed.), pp. 611–613, Arbeitskreis für Tierernäbrungsforschung Weihenstephan.Google Scholar
  47. Lee, M., Dong, A., and Yano, J., 1969, Metabolism of 75Se-selenite by human whole blood in vitro, Can. J. Biochem. 47:791.CrossRefGoogle Scholar
  48. Levander, O. A., 1976, Selected aspects of the comparative metabolism and biochemistry of selenium and sulfur, in Trace Elements in Human Health and Disease, Vol. 2 (A. S. Prasad, ed.), pp. 135–163, Academic Press, New York.Google Scholar
  49. Levander, O. A., and Argrett, L. C., 1969, Effect of arsenic, mercury, thallium, and lead on selenium metabolism in rats. Toxicol. Appl. Pharmacol. 14:308.CrossRefGoogle Scholar
  50. Martin, J. L., and Hurlbut, J. A., 1976, Tissue selenium levels and growth responses of mice fed selenomethionine, Se-methylselenocysteine, or sodium selenite, Phosphorous Sulfur 1: 295.CrossRefGoogle Scholar
  51. McConnell, K. P., and Portman, O. W., 1952a, Excretion of dimethyl selenide by the rat. J. Biol. Chem. 195:277.Google Scholar
  52. McConnell, K. P., and Portman, O. W., 1952b, Toxicity of dimethyl selenide in the rat and mouse, Proc. Soc. Exp. Biol. Med. 79:230.Google Scholar
  53. McConnell, K. P., and Roth, D. M., 1966, Respiratory excretion of selenium, Proc. Soc. Exp. Biol. Med. 123:919.Google Scholar
  54. Millar, K. R., and Allsop, T. F., 1972, Distribution of 75Se and 35S in intracellular fractions of rat liver and rat kidney, N. Z. J. Agrie. Res. 15:538.CrossRefGoogle Scholar
  55. Millar, K. R., Gardiner, M. A., and Sheppard, A. D., 1973, A comparison of the metabolism of intravenously injected sodium selenite, sodium selenate, and selenomethionine in rats, N. Z. J. Agrie. Res. 16:115.CrossRefGoogle Scholar
  56. Nakamuro, K., Sayato, Y., and Ose, Y., 1977, Studies on selenium-related compounds. VI. Biosynthesis of dimethyl selenide in rat liver after oral administration of sodium selenate, Toxicol. Appl. Pharmacol. 39:521.CrossRefGoogle Scholar
  57. Obermeyer, B. D., Palmer, I. S., Olson, O. E., and Halverson, A. W., 1971, Toxicity of trimethylselenonium chloride in the rat with and without arsenite, Toxicol. Appl. Pharmacol. 20:135.CrossRefGoogle Scholar
  58. Olson, O. E., and Palmer, I. S., 1976, Selenoamino acids in tissues of rats administered inorganic selenium, Metabolism 25:299.CrossRefGoogle Scholar
  59. Olson, O. E., Novacek, E. J., Whitehead, E. I., and Palmer, I. S., 1970, Investigations on selenium in wheat, Phytochemistry 9:1181.CrossRefGoogle Scholar
  60. Palmer, I. S., Fischer, D. D., Halverson, A. W., and Olson, O. E., 1969, Identification of a major selenium excretory product in rat urine, Biochim. Biophys. Acta 177:336.CrossRefGoogle Scholar
  61. Parizek, J., and Benes, J., 1973, Methylated radioselenium compounds: Their synthesis, metabolism, and practical use, in Radiopharmaceuticals and Labelled Compounds, Vol. 2, pp. 141–144, International Atomic Energy Agency, Vienna.Google Scholar
  62. Parizek, J., and Ostadalova, I., 1967, The protective effect of small amounts of selenite in sublimate intoxication, Experientia 23:142.CrossRefGoogle Scholar
  63. Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A., and Benes, J., 1971, The detoxifying effects of selenium. Interrelations between compounds of selenium and certain metals, in Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer, eds.), pp. 85–122, Marcel Dekker, New York.Google Scholar
  64. Parizek, J., Kalouskova, J., Babicky, A., Benes, J., and Pavlik, L., 1974, Interaction of selenium with mercury, cadmium, and other toxic metals, in Trace Element Metabolism in Animals, Vol. 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 119–131, University Park Press, Baltimore.Google Scholar
  65. Parizek, J., Kalouskova, J., Korunova, V., Benes, J., and Pavlik, L., 1976, The protective effect of pretreatment with selenite on the toxicity of dimethyl selenide, Physiol. Bohemoslov. 25:573.Google Scholar
  66. Peterson, P. J., and Butler, G. W., 1962, The uptake and assimilation of selenite by higher plants, Aust. J. Biol. Sci. 15:126.Google Scholar
  67. Rhead, W. J., and Schrauzer, G. N., 1974, The selenium catalyzed reduction of methylene blue by thiols, Bioinorg. Chemistry 3:225.CrossRefGoogle Scholar
  68. Rhead, W. J., Evans, G. A., and Schrauzer, G. N., 1974, Selenium in human plasma: Levels in blood proteins and behavior upon dialysis, acidification, and reduction, Bioinorg. Chem. 3:217.CrossRefGoogle Scholar
  69. Sandholm, M., 1973, The metabolism of selenite in cow blood in vitro, Acta Pharmacol. Toxicol. 33:6.CrossRefGoogle Scholar
  70. Sandholm, M., 1975, Function of erythrocytes in attaching selenite-Se onto specific plasma proteins, Acta Pharmacol. Toxicol. 36:321.CrossRefGoogle Scholar
  71. Shaw, W. H., and Anderson, J. W., 1974, Comparative enzymology of the adenosine triphosphate sulfurylases from leaf tissue of selenium-accumulator and non-accumulator plants, Biochem. J. 139:37.Google Scholar
  72. Srivastava, S. K., and Beutler, E., 1969, The transport of oxidized glutathione from human erythrocytes, J. Biol. Chem. 244:9.Google Scholar
  73. Sternberg, J., Brodeur, J., Imbach, A., and Mercier, A., 1968, Metabolic studies with seleniated compounds. III. Lung excretion of selenium-75 and liver function, Int. J. Appl. Radiat. Isot. 19:669.CrossRefGoogle Scholar
  74. Tappel, A. L., Forstrom, J. W., Zakowski, J. J., Lyons, D. E., and Hawkes, W. C., 1978, The catalytic site of rat liver glutathione peroxidase as selenocysteine and selenocysteine in rat liver, Fed. Proc. (Abstr.) 37:706.Google Scholar
  75. Tsay, D.-T., Halverson, A. W., and Palmer, I. S., 1970, Inactivity of dietary trimethylselenonium chloride against the necrogenic syndrome of the rat, Nutr. Rep. Int. 2:203.Google Scholar
  76. Tsen, C. C., and Tappel, A. L., 1958, Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite, J. Biol. Chem. 233:1230.Google Scholar
  77. Van Loon, J., and Radziuk, B., 1976, A quartz T-tube furnace-AAS system for metal speciation studies, Can. J. Spectrosc. 21:46.Google Scholar
  78. Vernie, L. N., Bont, W. S., and Emmelot, P., 1974, Inhibition of in vitro amino acid incorporation by sodium selenite, Biochemistry 13:337.CrossRefGoogle Scholar
  79. Vernie, L. N., Bont, W. S., Ginjaar, H. B., and Emmelot, P., 1975, Elongation factor 2 as the target of the reaction product between sodium selenite and glutathione (GSSeSG) in the inhibiting of amino acid incorporation in vitro, Biochim. Biophys. Acta 414:283.CrossRefGoogle Scholar
  80. Vlasakova, V., Benes, J., and Parizek, J., 1972, Application of gas chromatography for the analysis of trace amounts of volatile 75Se metabolites in expired air, Radiochem. Radioanal. Lett. 10:251.Google Scholar
  81. Walter, R., Schlesinger, D. H., and Schwartz, I. L., 1969, Chromatographic separation of isologous sulfur- and selenium-containing amino acids: Reductive scission of the selenium-selenium bond by mercaptans and selenols, Anal. Biochem. 27:231.CrossRefGoogle Scholar
  82. Wilson, L. G., and Bandurski, R. S., 1958, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Howard E. Ganther
    • 1
  1. 1.Department of Nutritional SciencesUniversity of WisconsinMadisonUSA

Personalised recommendations