The Response Matrix Method

  • Sten-Orjan Lindahl
  • Zbigniew Weiss
Part of the Advances in Nuclear Science and Technology book series (ANST, volume 5)


In the Response Matrix Method (RMM) the solution of a particle transport problem in a composite (large) domain,
$$V\mathop {\mathop U\limits_{i = 1} }\limits^N {V_i},$$
is constructed from precomputed particular solutions to the local problems associated with each of the subdomains Vi (i=1,2,...N). The RMM becomes efficient if:
  1. 1.

    the subdomains Vi, hereafter called nodes, are geometrically simpler than the whole domain of interest, V, so that the particular solutions for each node are computationally inexpensive.

  2. 2.

    the problem is such that many of the Vis have identical geometrical shape and material composition.



Diffusion Theory Response Matrix Response Matrice Partial Current American Nuclear Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amouyal, A., Benoist, P., and Horowitz, I., “Nouvelle Methode de Determination du Facteur d’Utilisation Thermique d’un Cellule,” Journal Nuclear Energy 6, Page 79, 1957.Google Scholar
  2. 2.
    Müller, A., and Linnartz, E., “Zur Berechnung des thermischen Nutzfaktors einer zylindrischen Zelle aus mehreren konzentrischen Zonen,” Nukleonik 5, Page 23, 1963.Google Scholar
  3. 3.
    Markl, H., “New Concepts in the Application of Collision Probabilities,” Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy 2, Geneva, Switzerland, Page 207, 1964.Google Scholar
  4. 4.
    Mayer, L., “Calculation of Flux Distributions in Reactor Sub-Regions with Generalized Multiple Collision Probabilities,” Journal Nuclear Energy 24, Page 337, 1970.ADSCrossRefGoogle Scholar
  5. 5.
    Cheng, H. S., McDaniel, C. T., and Leonard, A., “A Nodal Integral Transport Method for Calculation of Two-Dimensional Power Distributions in Non-Uniform Lattices,” USAEC CONF 710302, Page 655, 1971.Google Scholar
  6. 6.
    McDaniel, C. T., “A Two-Dimensional Few Group Response Matrix Calculation Method for Flux and Reactivity,” USERDA CONF 750413, Page 2111, 1975.Google Scholar
  7. 7.
    Häggblom, H. and Ahlin, A., “Transmission Probability Method of Integral Neutron Transport Calculation for Two-Dimensional Rectangular Cells,” Nuclear Science Engineering 56, Page 411, 1975.Google Scholar
  8. 8.
    Baily, H. S., “Response Matrix Analysis for the Fast Reactors,” USAEC CONF 730414, VII - 187, 1973.Google Scholar
  9. 9.
    Takeda, T., Azekura, K. and Ohnishi, T., “An Improved Response Matrix Method for Calculating Neutron Flux Distributions,” Nuclear Science Engineering 67, Page 709, 1977.Google Scholar
  10. 10.
    Honeck, H. C., “The JOSHUA System,” USERDA Report DP-1380, I. E. duPont de Nemours and Company, Savannah River Laboratory, Aiken, South Carolina, 1975.Google Scholar
  11. 11.
    Pryor, R. J., and Graves, W. E., “Response Matrix Method for Treating Reactor Calculations,” USAEC CONF 730414, Page VII - 179, 1973.Google Scholar
  12. 12.
    Anderson, M. M., and Honeck, M. C., “An Interface Current Technique for Two-Dimensional Cell Calculations,” USAEC CONF 730414, Page I - 53, 1973.Google Scholar
  13. 13.
    Pryor, R. J., “Response Matrix Method and the Cosine Currents Approximation,” Trans. American Nuclear Society 17, Page 262, 1973.Google Scholar
  14. 14.
    Pryor, R. J., and Sicilian, J. M., “Determination of Diffusion Parameters Using Response Matrix Theory,” Trans. American Nuclear Society 22, Page 249, 1975.Google Scholar
  15. 15.
    Sicilian, J. M., “Response Matrices in Space-Time Reactor Dynamics,” Nuclear Science Engineering 56, Page 291, 1975.Google Scholar
  16. 16.
    Sicilian, M. M. and Pryor, R. J., “TRASCAL, a Two-Dimensional, Multi-group, Response Matrix Kinetics Code,” USAEC CONF 750413, Page VI - 103, 1975.Google Scholar
  17. 17.
    Weiss, Z., “Some Basic Properties of the Response Matrix Equations,” Nuclear Science Engineering 63, Page 457, 1977.Google Scholar
  18. 18.
    Lindahl, S-O, “Multidimensional Response Matrix Theory,” Ph.D. Thesis, Kansas State University, 1975.Google Scholar
  19. 19.
    Shimizu, A., et al., “Response Matrix Method,” Journal Atomic Energy Society 5, Japan, Page 359, 1963.Google Scholar
  20. 20.
    Shimizu, A., et al., “Application of the Response Matrix Method to Criticality Calculations of One-Dimensional Reactors,” Journal Atomic Energy Society 5, Japan, Page 369, 1963.Google Scholar
  21. 21.
    Aoki, K. and Shimizu, A., “Application of the Response Matrix Method to Criticality Calculations of Two-Dimensional Reactors,” Journal Nuclear Sci. Technology 2, Page 149, 1965.CrossRefGoogle Scholar
  22. 22.
    Shimizu, A. and Aoki, K., Application of Invariant Embedding to Reactor Analysis, Academic Press, New York, 1972.Google Scholar
  23. 23.
    Weiss, Z. and Lindahl, S-O, “High-Order Response Matrix Equations in Two-Dimensional Geometry,” Nuclear Science Engineering 58, Page 166, 1975.Google Scholar
  24. 24.
    Burns, T. J. and Doming, J. J., “A Partial Current Balance Method for Space-and Energy-Dependent Reactor Calculations,” USAEC CONF 730414, Page VII - 162, 1973.Google Scholar
  25. 25.
    Ribaric, M., “Functional Analytic Concepts and Structures of Neutron Transport Theory,” Acd. Sc. Artum Slovenica, Ljubljana, 1973.Google Scholar
  26. 26.
    Babuska, J., “The Method of Weak Elements,” Technical Note BN-809, Institute Fluid Dynamics and Applied Mathematics, University of Maryland, 1974.Google Scholar
  27. 27.
    Jaswon, M. A. and Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, New York, San Francisco, 1977.Google Scholar
  28. 28.
    Isaacson, E. and Keller, H. B., Analysis of Numerical Methods, John Wiley & Sons, New York, 1966.MATHGoogle Scholar
  29. 29.
    Pfeiffer, W. and Shapiro, J. L., “Reflection and Transmission Functions in Reactor Physics,” Nuclear Science Engineering 38, Page 253, 1969.Google Scholar
  30. 30.
    Sicilian, J. M. and Pryor, R. J., “Acceleration Techniques for Response Matrix Methods,” Trans. American Nuclear Society 22, Page 246, 1975.CrossRefGoogle Scholar
  31. 31.
    Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.Google Scholar
  32. 32.
    Burns, T. J., “The Partial Current Balance Method: A Local Green’s Function Technique for the Numerical Solution of Multi-dimensional Neutron Diffusion Problems,” Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1975.Google Scholar
  33. 33.
    Hansen, K. F. and Kang, C. M., Finite Elements Methods in Reactor Physics Analysis, Adv. Nuclear Science Technology 8, PP 173–253, Academic Press, New York, 1975.Google Scholar
  34. 34.
    Kobayashi, K., “Solution of Two-Dimensional Diffusion Equation for Hexagonal Cells by the Finite Fourier Transformation,” Atomkernenergi 26, Page 249, 1975.Google Scholar
  35. 35.
    Kobayashi, J. and Ishibashi, H., “Solution of Two-Dimensional Neutron Diffusion Equation for Triangular Region by Finite Fourier Transformation,” Journal Nuclear Science Technology 15, Page 1, 1978.CrossRefGoogle Scholar
  36. 36.
    Lindahl, S-O, “Reciprocity Relations in Response Matrix Theory,” Nuclear Science Engineering 53, Page 475, 1974.Google Scholar
  37. 37.
    Kristiansen, G. K., Private Communication, Danish Atomic Energy Commission, Research Establishment, Ris0, Roskilde, Denmark, 1976.Google Scholar
  38. 38.
    Babuska, I. and Kellog, R. B., “Numerical Reactor Calculations,” IAEA, Vienna, 1972.Google Scholar
  39. 39.
    Strang, G. and Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.Google Scholar
  40. 40.
    Vladimirov, V. S., Tr. Mat. Inst. Akad. Nauk, SSSR 61, Page 1, 1961; AECL-1661, translated for Atomic Energy of Canada, Ltd., 1963.Google Scholar
  41. 41.
    Kaplan, S. and Davis, J. A., Trans. American Nuclear Society 9, Page 194, 1966; also, Nuclear Science Engineering 28, Page 166, 1967.Google Scholar
  42. 42.
    Davis, J. A., Nuclear Science Engineering 31, Page 127, 1968.Google Scholar
  43. 43.
    Buslik, A. J., Nuclear Science Engineering 35, Page 303, 1969.Google Scholar
  44. 44.
    Weiss, Z., Nuclear Science Engineering 50, Page 294, 1973.Google Scholar
  45. 45.
    Weiss, Z., Nuclear Science Engineering 48, Page 235, 1972.Google Scholar
  46. 46.
    Choong, P. T. and Soodak, H., Trans. American Nuclear Society 14, Page 650, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Sten-Orjan Lindahl
    • 1
  • Zbigniew Weiss
    • 1
  1. 1.ASEA-ATOMVasterasSweden

Personalised recommendations