Controlled Fusion and Reactors of the Tokamak Type

  • Robert W. Conn
Part of the Advances in Nuclear Science and Technology book series (volume 10)


Research on fusion reactor problems has increased dramatically as the plasma physics of magnetic confinement continues to make substantial progress. As part of this research several studies (1–6) have been completed on the conceptual design of future fusion reactors. The purpose of these studies is to identify the key technological problems associated with fusion reactors and thereby guide future research. A description of one such conceptual design can be used to serve as an introduction to the broad field of fusion technology, particularly if it is combined with other work that generally surveys the technological aspects of most approaches to fusion power (6,7). In this paper, a detailed description of the UWMAK-III conceptual tokamak reactor design (8) is given and it serves to highlight the important technological areas.


Fusion Reactor Toroidal Field Poloidal Field Toroidal Field Magnet Confinement Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badger, B., Abdou, M.A., Boom, R. W., Brown, R.G., Chang, T. E., Conn, R.W., Donhowe, J.M., El-Guebaly, L.A., Emmert, G.A., Hopkins, G.R., Houlberg, W.A., Johnson, A.B., Kamperschroer, J.H., Klein, D., Kulcinski, G.L., Loft, R.G., McAlees, D.G., Maynard, C.W., Mense, A.T., Neil, G.R., Norman, E., Sanger, P.A., Stewart, W.E., Sung, T., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Wittenberg, L.J., Yang, T.F., Young, W.D., “UWMAK-I, A Wisconsin Toroidal Fusion Reactor Design”, Nuclear Engineering Department Report FDM-68, The University of Wisconsin, Madison, 1973 (Vol. 1); May 1975 (Vol. 2).Google Scholar
  2. 1a.
    See also, Kulcinski, G.L., Conn, R.W., “Conceptual Design of a 5000 MW(th) D-T Tokamak Reactor”, in Fusion Reactor Design Problems, IAEA, Vienna, 1974, P. 51Google Scholar
  3. 1b.
    Conn, R.W., Kulcinski, G.L., “Technological Implications for Tokamak Fusion Reactors of the UWMAK-I Conceptual Design”, Proceedings First National Topical Conference on the Technology of Controlled Nuclear Fusion, CONF-740402, Vol. I, U.S.A.E.C., Page 56, 1974.Google Scholar
  4. 2.
    Mills, R.G., Editor, “A Fusion Power Plant”, Princeton Plasma Physics Laboratory Report MATT-1050, Princeton University, August 1974.Google Scholar
  5. 3.
    “An Engineering Design Study of a Reference Theta-Pinch Reactor (RTPR)”, LA-5336 or ANL-8019, Joint Report by Los Alamos Scientific Laboratory and Argonne National Laboratory, 1974.Google Scholar
  6. 4.
    Werner, R.W., Carlson, G.A., Hovingh, J., Lee, J.D., Peterson, M., “Progress Report No. 2 in the Design Considerations for a Low Power Experimental Mirror Fusion Reactor”, Lawrence Livermore Laboratory Report UCRL-7405 4–2, 1974.Google Scholar
  7. 5.
    Badger, B., Conn, R.W., Kulcinski, G.L., Abdou, M.A., Aronstein, R., Avci, H.I., Boom, R.W., Cheng, E.T., Davis, J., Donhowe, J.M., Emmert, G.A., Eyssa, Y., Ghoniam, N.M., Ghose, S., Houlberg, W., Kesner, J., Lue, W., Maynard, C.W., Mense, A., Mohan, N., Peterson, H.A., Sung, T.Y., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Westerman, R., Wittenberg, L.J., Yang, T.F., Young, J., Young, W.D., “UWMAK-II, A Conceptual Tokamak Power Reactor Design”, Nuclear Engineering Department Report FDM-112, University of Wisconsin, December 1975.Google Scholar
  8. 6.
    Ribe, F.L., Rev. Mod. Phys., 47,7, 1975. For a general view of worldwide research in fusion reactor design see: Fusion Reactor Design Problems, IAEA, Vienna, 1974; Plasma Physics and Controlled Nuclear Fusion Research 1974, IAEA, Vienna, 1975, Vol. III; Proc. First National Topical Conf. on the Technology of Controlled Nuclear Fusion, CONF-740402, Volumes I and II, U. S. Atomic Energy Commission, 1974.CrossRefGoogle Scholar
  9. 7.
    Steiner, D., Nucl. Sci. Eng., 58, P. 102, 1975.Google Scholar
  10. 7a.
    See also, Nozawa, M., Steiner, D., “An Assessment of the Power Balance in Fusion Reactors,” Oak Ridge National Laboratory Report, ORNL-TM-4421, 1974.Google Scholar
  11. 8.
    Conn, R.W., Kulcinski, G.L., Maynard, C.W., Aronstein, R., Avci, H.I., Blackfield, D., Boom, R., Bowles, A., Cameron, E., Cheng, E.T., Clemmer, R., Dalhed, S., Davis, J., Emmert, G.A., Ghoniem, N.M., Ghose, S., Gohar, Y., Kesner, J., Kuo, S., Larsen, E., Ramer, E., Scharer, G., Schmunk, R.E., Sung, T.Y., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Yang, T.F., Young, W.D., “UWMAK-III, A High Performance, Noncircular Tokamak Power Reactor Design,” Nuclear Engineering Department Report FDM-150, The university of Wisconsin, 1976.Google Scholar
  12. 9.
    Mills, R.G., “Catalyzed Deuterium Fusion Reactors,” Princeton Plasma Physics Laboratory Report TM-259, 1971.Google Scholar
  13. 10.
    Duane, B.H., “Fusion Cross Section Theory”, Battelle Northwest Laboratory Report, BNWL-1685, 1972.Google Scholar
  14. 11.
    Miley, G.H., Towner, H., Ivich, N., “Fusion Cross-Sections and Reactivities”, Nuclear Engineering Program, Report C00–2218-17, University of Illinois, 1974.Google Scholar
  15. 12.
    Lawson, J.D., Proceedings Physical Society, B-70, P.6 1957.CrossRefGoogle Scholar
  16. 13.
    Meade, D., Nuclear Fusion 14, P. 289, 1974.CrossRefGoogle Scholar
  17. 14.
    Conn, R.W., Kesner, J., Nuclear Fusion 15, P. 775, 1975.CrossRefGoogle Scholar
  18. 15.
    Post, R.F., Annual Review of Nuclear Science, 20, P. 509, 1970.CrossRefGoogle Scholar
  19. 16.
    Futch, A.H., Jr., Holdren, J.P., Killeen, J., Mirin, A. A., Plasma Physics, 14, P. 211, 1972.Google Scholar
  20. 17.
    Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth Conference Proceedings, Tokyo, IAEA, Vienna. 1975. See papers by D. E. Baldwin et al., Vol. I, P. 301, and M. E. Rensink et al., Vol. I, P. 311.Google Scholar
  21. 18.
    Gott, Yu.B., Ioffe, M.S., Telkovsky, V.C., Nuclear Fusion Supplement 3, P. 1045, 1962.Google Scholar
  22. 19.
    Ibid Ref. 17, paper by Coensgin, F.H., Cummins, F.W., Molvik, A.W., Nexsen, W.E., Simonen, T.C., Stallard, B.W., Vol. II, P. 323.Google Scholar
  23. 20.
    Post, R.F., Rosenbluth, M.N., Phys. Fluids, 9, P. 730, 1966.CrossRefGoogle Scholar
  24. 21.
    Plasma Physics and Controlled Nuclear Fusion Research, Proceedings Fourth Conference, Madison, Wisconsin (IAEA, Vienna, 1971). See D.E. Baldwin et al., Vol. II, P. 735.Google Scholar
  25. 22.
    Molvik, A.W., Coensgen, F.H., Cummins, W.F., Nexsen, W.E., Simonen, T.C., Phys. Rev. Letts., 32, P. 1109, 1974.CrossRefGoogle Scholar
  26. 23.
    Logan, B.G., “Two Component Experiments in 2XIIB”, Lawrence Livermore Laboratory Report, UCID-16851, 1975.Google Scholar
  27. 24.
    Coensgen, F.H., et al., “Startup of a Neutral-Beam-Sustained Plasma in a Quasi-DC Magnetic Field”, Lawrence Livermore Laboratory Report, UCRL-78057, 1976.Google Scholar
  28. 25.
    Ibid, Ref. 21, paper by Burnett, S.C., et al., Vol. III, P. 201.Google Scholar
  29. 26.
    Ibid, Ref. 17, Paper by Cantrell, E.L. et al., Vol. III, P. 13.Google Scholar
  30. 27.
    Artsimovich, L.A., Nuclear Fusion 12, P. 215, 1972.CrossRefGoogle Scholar
  31. 28.
    Furth, H.P., Nuclear Fusion 15, P. 487, 1975.CrossRefGoogle Scholar
  32. 29.
    Spitzer, L., Physics of Fully Ionized Gasses, J. Wiley, New York, Second Edition, 1962.Google Scholar
  33. 30.
    Gorbunov, E.P., et al., “Controlled Fusion and Plasma Physics,”Proceedings 6th European Conference, Moscow, Vol. I., P. 1, 1973.Google Scholar
  34. 31.
    Ibid Ref. 19, D. Dimock et al., Vol. 1, P. 451.Google Scholar
  35. 32.
    Ibid Ref. 17, Equipe TFR, Vol. I, P.P. 127 and 135.Google Scholar
  36. 33.
    Bol, K., et al., Phys. Rev. Letts., 29, P. 495, 1972.CrossRefGoogle Scholar
  37. 34.
    Ibid Ref. 17, Paper by Bol, K., et al., Vol. I, P. 83; also, Bol, K., et al., Phys., Rev. Letts., 32, P. 661, 1974.Google Scholar
  38. 35.
    Berry, L.A., Bulletin American Physical Society 20, P. 1332, 1975.Google Scholar
  39. 36.
    Dei Cas, R., TFR Group, Bulletin American Physical Society, 20, P. 1332, 1975.Google Scholar
  40. 37.
    Galeev, A.A., Sagdeer, R.Z., Soviet Physics JETP 32, P. 572, 1971.Google Scholar
  41. 38.
    Bickerton, R.J., Conner, J.W., Taylor, J.B., Nature, Phys. Science 229, P. 110, 1972.Google Scholar
  42. 39.
    Ibid Ref. 17, Meade, D.M., Furth, H.P., Rutherford, P.H., Seidl, F., Duchs, D.F., Vol. I, P. 605.Google Scholar
  43. 40.
    Ohkawa, T., Voorhies, H.G., Phys. Rev. Letts., 22, P. 1275, 1969CrossRefGoogle Scholar
  44. 40a.
    see also Ohkawa, T., Jensen, T.H., Plasma Physics 12, P. 789, 1970.CrossRefGoogle Scholar
  45. 41.
    Ibid Ref. 17, Ohkawa, T., et al., Vol. I, P. 281.Google Scholar
  46. 42.
    Rosenbluth, M.N., Hazeltine, R.D., Hinton, F.L., Phys. Fluids, 15, P. 116, 1972.CrossRefGoogle Scholar
  47. 43.
    Pfrisch, D., Schlüter, A., Max Planck Institute Report, MPI/PA/7/62, 1962.Google Scholar
  48. 44.
    Hinton, F.L., Rosenbluth, M.N., Phys. Fluids 16, P. 836, 1973.CrossRefGoogle Scholar
  49. 45.
    Galeev, A.A., Sagdeev, R.Z., Zh. Eksp. Theo. Fiz. 53, P. 348, 1967Google Scholar
  50. 45a.
    Galeev, A.A., Sagdeev, R.Z., Soviet Phys. Dokl. 14, P.1198, 1970Google Scholar
  51. 45b.
    Galeev, A.A., Sagdeev, R.Z., Sov. Phys. JETP 32, P. 572, 1971.Google Scholar
  52. 46.
    Berry, L.A., Clarke, J.F., Hogan, J.T., Phys. Rev. Letts., 32, P. 362, 1974.CrossRefGoogle Scholar
  53. 47.
    Yoshikawa, S., Phys. Rev. Letts., 25, P. 353, 1970CrossRefGoogle Scholar
  54. 47a.
    also ibid Ref. 17, Yoshikawa, S., Christofilos, N., Vol. II, P. 357.Google Scholar
  55. 48.
    Artsimovich, L.A., J.E.T.P. Letters 13, P. 70, 1971.Google Scholar
  56. 49.
    Hazeltine, R.D., Hinton, F.L., Rosenbluth, M.N., Phys. Fluids 16, P. 1645, 1973.CrossRefGoogle Scholar
  57. 50.
    Kadomtsev, B.B., Pogutse, O.P., Zh. Ex. sp. Teor. Fi. 51, P. 1734, 1966Google Scholar
  58. 50.
    Kadomtsev, B.B., Pogutse, O.P., Sov. Phys. J.E.T.P. 24, P. 1172, 1967.Google Scholar
  59. 51.
    Kadomtsev, B.B., Pogutse, O.P., Soviet Phys. Dokl. 14, P. 470, 1969.Google Scholar
  60. 52.
    Kadomtsev, B.B., Pogutse, O.P., Nuclear Fusion 11, P. 67, 1971.CrossRefGoogle Scholar
  61. 53.
    Ibid Ref. 17, Horton, W., et al., Vol. I, P. 541, and Coppi, B., Pozzolo, R., Rewoldt, G., Schep, T., Vol. I, P. 549.Google Scholar
  62. 54.
    Spano, A.H. (Compiler), Nuclear Fusion 15, P. 909, 1975.CrossRefGoogle Scholar
  63. 55.
    Ibid Ref. 17, Behrisch, R., Kadomtsev, B.B., Vol. II, P. 229.Google Scholar
  64. 56.
    Conn, R.W., Kulcinski, G.L., Avci, H., Magraby, M. El, Nuclear Technology 26, P. 125, 1975.Google Scholar
  65. 57.
    Segal, H., Richards, T.G., “Low Temperature Resistance Studies on Cyclically Strained Aluminum”, in Advances in Cryogenic Engineering, P. 21, in press.Google Scholar
  66. 58.
    Yang, T., Conn, R.W., Bulletin American Phys. Society 20, P. 1280, 1975Google Scholar
  67. 58a.
    Yang, T., Conn, R.W., “MHD Equilibrium and Stability Calculations for a Noncircular Highβ θ Tokamak Plasma”, Nuclear Engineering Department Report, UWFDM-152, University of Wisconsin, 1975.Google Scholar
  68. 59.
    Ibid Ref. 17, Chance, M.S., 3t al., Vol. I, P. 463.Google Scholar
  69. 60.
    Scharer, J., Conn, R.W., Blackfield, D., “Study of RF and Neutral Beam Heating in Tokamaks”, Electric Power Research Institute Report, EPRI ER-268, 1976.Google Scholar
  70. 61.
    Ibid Ref. 17, Adam, J. et al., Vol. I, P. 65.Google Scholar
  71. 62.
    Hogan, J.T., Meth. in Comp. Physics 16, 1976Google Scholar
  72. 62.
    Hogan, J.T., Oak Ridge National Laboratory Report, ORNL-TM-5153, 1975.Google Scholar
  73. 63.
    Kesner, J., Conn, R.W., Nuclear Fusion, 16, P. 397, 1976.CrossRefGoogle Scholar
  74. 64.
    Kulcinski, G.L., Conn, R.W., Lang, G., Nuclear Fusion 15, P. 327, 1975.CrossRefGoogle Scholar
  75. 65.
    Mense, A.T., “Poloidal Diverters for Tokamak Reactors”, Ph.D. Thesis, University of Wisconsin, 1977.Google Scholar
  76. 66.
    Mense, A.T., Emmert, G.A., Callen, J.D., Nuclear Fusion 15, P. 703, 1975.CrossRefGoogle Scholar
  77. 67.
    Boom, R.W., Moses, R.W., Jr., Young, W.C., “Magnet Design of Toroidal Field Coils for the UWMAK-II and III Tokamak Systems,” Nuclear Eng. and Design, 39, P. 99, 1976.CrossRefGoogle Scholar
  78. 68.
    Moses, R., Young, W., “Analytic Expressions for Magnetic Forces on Sectored Toroidal Coils”, 6th Symposium on Engineering Problems of Fusion Research, Paper D-3–4, November 1975Google Scholar
  79. 68a.
    Moses, R., Young, W., Nuclear Engineering Department Report UWFDM-143, University of Wisconsin, 1975.Google Scholar
  80. 69.
    Cornish, D., Lawrence Livermore Laboratory, private communication.Google Scholar
  81. 70.
    Engle, W. Jr., “A User’s Manual for ANISN”, Oak Ridge Gaseous Diffusion Plant Report, K-1693, 1967.Google Scholar
  82. 71.
    Mynatt, F.R., et al., “The DOT-III Two-Dimensional Discrete Ordinates Transport Code”, Oak Ridge National Laboratory Report, ORNL-TM-4280, 1973.Google Scholar
  83. 72.
    Bell, G.E., Glasstone, S., Nuclear Reactor Theory, Van Nostrand-Reinhold, New York, 1970.Google Scholar
  84. 73.
    Abdou, M.A., Conn, R.W., Nuclear Science and Engineering, 55, P. 226, 1974.Google Scholar
  85. 74.
    Gohar, Y., University of Wisconsin, private communication.Google Scholar
  86. 75.
    Conn, R.W., Gohar, Y., Maynard, C.W., Trans. American Nuclear Society, 22, P. 16, 1976.Google Scholar
  87. 76.
    Chapin, D.L., Price, W., Jr., Trans. American Nuclear Society 21, P. 66, 1975.Google Scholar
  88. 77.
    Hoffman, M.A., and Carlson, G.A., “Calculation Techniques for Estimating the Pressure Losses for Conducting Fluid Flows in Magnetic Fields”, Lawrence Livermore Laboratory Report UCRL-51010, 1971.Google Scholar
  89. 78.
    Sze, D.K., Stewart, W.E., “Lithium Cooling for a Low-β Tokamak Reactor”, Proceedings, 1972 Symposium on the Technology of Controlled Thermonuclear Fusion Experiments and Engineering Aspects of Fusion Reactor, CONF-721111, AEC Symposium Series No. 31, USAEC, 1974.Google Scholar
  90. 79.
    Sze, D.K., Ibid Ref. 8, Chapter VI.Google Scholar
  91. 80.
    Clemmer, R.G., Larson, E.M., Wittenberg, L.W., “Tritium Handling, Breeding and Containment in Two Conceptual Fusion Reactor Designs: UWMAK-I and UWMAK-II,” Nuclear Engineering and Design, 39, P. 85, 1976; also Ref. 8, Chapter XII.CrossRefGoogle Scholar
  92. 81.
    Wilkes, W.R., Trans. American Nuclear Society, 19, P. 20, 1974.Google Scholar
  93. 82.
    Watson, J.S., “An Evaluation of Methods for Recovering Tritium from Blanket or Cooling Systems of Fusion Reactors”, Oak Ridge National Laboratory Report ORNL-TM-3794, 1972.CrossRefGoogle Scholar
  94. 83.
    Barrer, R.M., Diffusion In and Through Solids, Cambridge University Press, P. 168, 1941.Google Scholar
  95. 84.
    Vogelsang, W.F., Kulcinski, G.L., Lott, R.G., Sung, T.Y., Nuclear Technology 22, P. 379, 1974.Google Scholar
  96. 85.
    Conn, R.W., Sung, T.Y., Abdou, M.A., Nuclear Technology 26, P. 391, 1975.Google Scholar
  97. 86.
    Kulcinski, G.L., Davis, J., Schmunk, R.E., “The Case for Molybdenum Alloys in D-T Fusion Reactors”, Nuclear Engineering Department Report UWFDM-142, The University of Wisconsin, 1975.Google Scholar
  98. 87.
    Bianchi, L.M., et al., Universal Cyclops Corporation Report (available from National Technical Information Service (NTIS)), Report No. AD-458529, 1964.Google Scholar
  99. 88.
    Davis, J.W., McDonnell-Douglas Astronautics-East, St. Louis, Missouri, private communication.Google Scholar
  100. 89.
    Cheng, E.T., Conn R.W., Trans. American Nuclear Society, 22, P. 44, 1975.Google Scholar
  101. 90.
    Gill, W.W., et al., AIChE 6, P. 139, 1960.CrossRefGoogle Scholar
  102. 91.
    Schmunk, D., Kulcinski, G.L., “Survey of Irradiation Data on Molybdenum”, University of Wisconsin Report UWFDM-161, September 1976.Google Scholar
  103. 92.
    Gray, W.J., Morgan, W.C., “High Temperature Graphite Irradiations: 550 to 1450°C”, Battelle Pacific Northwest Laboratories Report, BNWL-1672, 1972.Google Scholar
  104. 93.
    Van den Berg, M., Everett, M.R., Kingsbury, A., “The Relationship Between Irradiation Temperature and Dimensional Changes of Nuclear Graphites”, 12th Biennial Conference on Carbon, University of Pittsburg, PP 307–310, 1975.Google Scholar
  105. 94.
    Morgan, W.C., Woodruff, E.M., Gray, W.J., “Irradiation Behavior of Graphite at Very High Temperature”, in 2nd National Topical Conference on Controlled Fusion Technology, Richland, Washington, September, 1976, to be published.Google Scholar
  106. 95.
    Holt, J.B., Hosmer, D.W., Guinan, M.W., Condit, R.H., Borg, R.J., “Helium Generation and Diffusion in Graphite”, in 2nd National Topical Conference on Controlled Fusion Technology, Richland, Washington, September, 1976, to be published.Google Scholar
  107. 96.
    McCracken, G.M., Rep. Prog. Phys. 38, P. 241, 1975.CrossRefGoogle Scholar
  108. 97.
    Erents, S.K., Braganza, C.M., McCracken, G.M., “Methane Formation During the Interaction of Energetic Protons and Deuterons with Carbon”, Journal Nuclear Material, in press.Google Scholar
  109. 98.
    Balooch, M., Olander, D.R., Journal Chem. Phys. 63, P. 4772, 1975.CrossRefGoogle Scholar
  110. 99.
    Lang, G., Holmes, V.L., Nuclear Fusion 16, P. 162, 1976.CrossRefGoogle Scholar
  111. 100.
    Conn, R.W., Kuo, S., “An Advanced Conceptual Tokamak Fusion Reactor Utilizing Closed Cycle Helium Gas Turbines,” Nuclear Engineering and Design, 39, P. 45, 1976.CrossRefGoogle Scholar
  112. 101.
    Bechtel Corporation Scientific Development, “Balance of Plant and Cost Study for the Conceptual Fusion Reactor Design, UWMAK-III”, Bechtel Corporation Report to the University of Wisconsin, February 1976.Google Scholar
  113. 102.
    Cameron, E., University of Wisconsin, Department of Geology, private communication; also, Ref. 8, Chapter XII.Google Scholar
  114. 103.
    Vine, J.D., Trans. American Nuclear Society 23, P. 55, 1975.Google Scholar
  115. 104.
    Bowles, A., Von Fischer, E., Bechtel Corporation, Scientific Development, and Conn, R.W., Sviatoslavsky, I., The University of Wisconsin; extensive details reported in Chapter XIII, Ref. 8, and in Ref. 101.Google Scholar
  116. 105.
    United Engineers and Contractors, “Pressurized Water Reactor Plant, 1000 MW Central Station Power Plants-Investment Cost Study”, AEC Report WASH-1230, Vol. I, 1971.Google Scholar
  117. 106.
    Levenson, M., Murphy, P.M., Zaleski, C.P.L., Nuclear News 19, P. 54, 1976.Google Scholar
  118. 107.
    Sze, D.K., Larsen, E.M., Cheng, E.T., Clemmer, R.G., Trans. American Nuclear Society 22, P. 21, 1975.Google Scholar
  119. 108.
    Kulcinski, G.L., Brown, R.G., Lott, R.G., Sanger, P.A., Nuclear Technology 22, P. 20, 1974.Google Scholar
  120. 109.
    Bloom, E.E., Wiffen, F.W., Moziasz, P.J., Stiegler, J.O., “Temperature and Fluence Limits for a Type 316 Stainless Steel CTR First Wall,” Nuclear Technology, 31, P. 115, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert W. Conn
    • 1
  1. 1.Fusion Technology Program, Nuclear Engineering DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations