Skip to main content

Design and Testing of Electrical Insulation for Superconducting Coils

  • Chapter
Book cover Advances in Cryogenic Engineering

Part of the book series: A Cryogenic Engineering Conference Publication ((ACRE,volume 33))

Abstract

This paper reviews and summarizes the dielectric properties of liquid and gaseous helium and nitrogen, vacuum, and solid insulation materials for practical insulation design for superconducting coils. The influence of electrode geometry on breakdown voltage is discussed, and features that require special care are pointed out. Appropriate room-temperature high-voltage testing is considered. Finally, the paper examines the implications for coil insulation design of a new class of superconductors that can operate at temperatures approaching 77 K.

Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Winkelnkemper et al., Breakdown of gases in uniform electric fields, Electra 52: 67 (1977).

    Google Scholar 

  2. J. D. Cobine, “Gaseous Conductors,” McGraw-Hill, New York (1941), pp. 143165.

    Google Scholar 

  3. E. Husain and R. S. Nema, Electric stress at breakdown in uniform field for air, nitrogen, and sulfur hexafluoride, in: “Proc. Fourth Intl. Symp. on Gaseous Dielectrics,” Pergamon, New York (1984), p. 168.

    Google Scholar 

  4. E. Gockenbach, The dielectric strength of some freons and their mixtures with nitrogen and sulphur hexafluoride, in: “Proc. First Intl. Symp. on Gaseous Dielectrics,” CONF-780301, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1978), p. 355.

    Google Scholar 

  5. J. Gerhold, Dielectric breakdown of cryogenic gases and liquids, Cryogenics 19: 571 (1979).

    Article  CAS  Google Scholar 

  6. M. J. Mulcahy et al., Designed experiments on high voltage vacuum breakdown, in: “Proc. Second Intl. Symp. on Insulation of High Voltages in Vacuum,” Massachusetts Institute of Technology, Cambridge (1966), p. 177.

    Google Scholar 

  7. B. Fallou et al., High voltage dielectric behavior of liquid and hypercritical helium, in “Low Temperatures and Electric Power,” Pergamon, New York (1970), p. 377 (in French).

    Google Scholar 

  8. K. N. Mathes, Dielectric properties of cryogenic liquids, IEEE Trans. on Elec. Ins. EI-2: 24 (1967).

    Google Scholar 

  9. P. H. Burnier, J. L. Moreau, and J. P. Lehmann, The dielectric strength of cryogenic fluids and solid insulators, in: “Advances in Cryogenic Engineering,” Vol. 15, Plenum Press, New York (1970), p. 76.

    Google Scholar 

  10. P. Chowdhuri, Some characteristics of dielectric materials at cryogenic temperatures for HVDC systems, IEEE Trans. on Elec. Ins. EI-16: 40 (1981).

    Google Scholar 

  11. M. M. Menon et al., Dielectric strength of liquid helium impregnated plastic tapes, in: “Annual Report-1975 Conf. on Electrical Insulation and Dielectric Phenomena,” National Academy of Sciences, Washington, DC (1978), p. 277.

    Google Scholar 

  12. G. Bogner, Cryopower transmission studies in Europe, Cryogenics 15: 79 (1975).

    Article  CAS  Google Scholar 

  13. S. J. Rigby and B. M. Weedy, Liquid nitrogen-impregnated tape insulation for cryoresistive cable, IEEE Trans. on Elec. Ins. EI-10: 1 (1975).

    Google Scholar 

  14. I. Ischii and T. Noguchi, Surface flashover strength in super-critical helium, in: “Annual Report-1980 Conf. on Electrical Insulation and Dielectric Phenomena,” National Academy Press, Washington, DC (1980), p. 397.

    Google Scholar 

  15. R. Hawley, Solid insulators in vacuum: A review, Vacuum 18: 383 (1968).

    Article  CAS  Google Scholar 

  16. J. Wankowicz, Flashover voltage of spacer insulators in a vacuum at 290–6K, Cryogenics 23: 482 (1983).

    Article  CAS  Google Scholar 

  17. D. B. Hopkins, Design considerations and data for gas-insulated high voltage structures, in: “Proc. Sixth Symp. on Eng. Probs. of Fusion Research,” IEEE, New York (1976), p. 435.

    Google Scholar 

  18. A. Bouwers and P. G. Cath, The maximum electrical field strength for several simple electrode configurations, Philips Tech. Rev. 7: 270 (1941).

    Google Scholar 

  19. H. Ryan and C. A. Walley, Field auxiliary factors for simple electrode geometries, Proc. IEE 114: 1529 (1967).

    Google Scholar 

  20. M. Rabinowitz, Electrical breakdown in vacuum: new experimental and theoretical observations, Vacuum 15: 59 (1965).

    Article  CAS  Google Scholar 

  21. J. Artbauer and J. Griac, Some factors preventing the attainment of intrinsic electric strength in polymeric insulations, IEEE Trans. on Elec. Ins. EI-5: 104 (1970).

    Google Scholar 

  22. A. Bulinski, J. Densley, and T. S. Sudarshan, The ageing of electrical insulation at cryogenic temperatures, IEEE Trans. on Elec. Ins. EI-15: 83 (1980).

    Google Scholar 

  23. J. Gerhold, Design criteria for high voltage leads for superconducting power systems, Cryogenics 24: 73 (1984).

    Article  Google Scholar 

  24. F. Schauer, A capacitance-graded cryogenic high voltage bushing for vertical or horizontal mounting, Cryogenics 24: 90 (1984).

    Article  Google Scholar 

  25. E. B. Forsyth and M. Meth, “Electrical insulation requirements for superconducting magnets used in a large system,” BNL 29968, Brookhaven National Laboratory, Upton, New York (1981).

    Google Scholar 

  26. M. J. Mulcahy et al., A review of insulation breakdown and switching in gas insulation, Insulation/Circuits 16: 55 (1970).

    Google Scholar 

  27. D. W. Bouldin et al., A current assessment of the potential of dielectric gas mixtures for industrial applications, in: “Proc. Fourth Intl. Symp. on Gaseous Dielectrics,” Pergamon, New York (1984), p. 204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwenterly, S.W. (1988). Design and Testing of Electrical Insulation for Superconducting Coils. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9874-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9874-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9876-9

  • Online ISBN: 978-1-4613-9874-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics