NbTi Ultrafine Filament Wires for 50/60 Hertz Use

  • A. Fevrier
  • P. Dubots
  • J. C. Renard
  • Y. Laumond
  • Hoang Gia Ky
  • J. L. Sabrie
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)


Thanks to technological progress carried out in our Company for the last ten years, we have succeeded in manufacturing long lengths of NbTi ultra-fine filament wires in which 50 Hertz losses are strongly reduced. These results have been obtained by manufacturing the wires with a Cu-30 At % Ni matrix between the filaments, by reducing the filament diameter well below .5 micron and by reducing the twist pitch length to 4 times the wire diameter.

These new wires, which open very new prospects for industrial applications of superconductivity in fast pulsed magnets and in large 50/60 Hertz equipments, herald promises of a technological revolution in electrotechnology and very likely in high power electronics.

In this paper we present the state-of-the-art of NbTi ultra-fine filament wires and we present the reflections of Alsthom and Laboratoires de Marcoussis which lead to reconsider electric machine design on account of technical and econominal potentials of these new superconducting wires.


Critical Current Density Wire Diameter Filament Wire Iron Core Filament Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Dubots, A. Février and al., “8th International Conference on magnet Technology”, Journal de Physique, Sup.1, (1984), pp.C1–467–470.Google Scholar
  2. 2.
    J.L. Sabrié, “8th International Conference on magnet Technology”, Journal de Physique, Sup.l, (1984), pp. C1–717–720.Google Scholar
  3. 3.
    A. Février, Thèse, Université de Paris-Sud (1973).Google Scholar
  4. 4.
    I. Hlasnik, IEEE Trans. Magn. MAG 17: 2261–2269 (1981).CrossRefGoogle Scholar
  5. 5.
    T. Ogasawara and al., IEEE Trans. Magn. MAG 19: 248–251 (1983).CrossRefGoogle Scholar
  6. 6.
    P. Dubots and al, “Proceedings of the Eighth International Cryogenic Engineering Conference” England (1980), pp 505–508.Google Scholar
  7. 7.
    P. Dubots and al., “Proceedings of the tenth international cryogenic Engineering Conference” England (1984), pp 610–615.Google Scholar
  8. 8.
    A. Février, Cryogenics April 1983: 185–200.Google Scholar
  9. 9.
    A. Février, J.C. Renard, IEEE Trans. Magn. MAG 17: 224–227(1981).Google Scholar
  10. 10.
    P. Dubots, A. Février, and al., IEEE Trans. Magn. MAG 21: 177–180 (1985).CrossRefGoogle Scholar
  11. 11.
    J.L. Duchateau, A. Février, Y. Laumond, “Stability of superconductors in helium I and helium II”, Int. Inst. Refr. Paris (1981) pp. 269–283.Google Scholar
  12. 12.
    W.J. Carr Jr., G.R. Wagner, “Advances in Cryogenic Engineering” Vol.30, (1984) pp. 923–930.Google Scholar
  13. 13.
    W.J. Carr Jr., IEEE Trans. Magn. MAG 21: 355–357 (1985).CrossRefGoogle Scholar
  14. 14.
    J.L. Sabrié, J. Goyer, IEEE Trans. Magn. MAG 19: 529–531 (1983).CrossRefGoogle Scholar
  15. 15.
    B.B. Gamble, T.A. Kein, “Advances in Cryogenic Engineering”, Vol. 25, (1980) pp. 127–136.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Fevrier
    • 1
  • P. Dubots
    • 1
  • J. C. Renard
    • 1
  • Y. Laumond
    • 2
  • Hoang Gia Ky
    • 2
  • J. L. Sabrie
    • 2
  1. 1.Laboratoires de Marcoussis - CR - C.G.E.MarcoussisFrance
  2. 2.AlsthomBelfortFrance

Personalised recommendations