Dual Ion-Beam Deposition of Superconducting NbN Films

  • E. K. Track
  • L.-J. Lin
  • G.-J. Cui
  • D. E. Prober
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)


Superconducting NbN films have been deposited onto unheated substrates using a dual ion-beam technique. The NbN films produced have Tc up to 12 K and resistivities of ≳150µΩ-cm. The substrate temperature does not exceed 100 °C. TEM analysis of these films shows a random in-plane orientation of <100 Å-size grains. Electron diffraction indicates fine-grain polycrystalline material, and a Read x-ray camera verifies this to be the high-Tc δ-phase with the B1 crystal structure. Using a native oxide barrier on these films and a Pb.71Bi.29 counterelectrode, tunnel junctions are produced with current densities of 30 A/cm2 and Vm of 50 mV at 4.2 K. Artificial barriers have been successfully produced, using oxidized Al or Ta overlayers or AlN. The quality of the resulting I-V curves is comparable to that of junctions with native oxide barriers. The junction resistance with the artificial barriers is higher, however, and the conductance at large voltages reflects the different properties of the artificial barriers.


Tunnel Junction Tunnel Barrier Current Rise Artificial Barrier Cryogenic Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Cukauskas, W. L. Carter, S. B. Qadri, and E. F. Skelton, IEEE Trans. Magn., MAG-21. 505 (1985).CrossRefGoogle Scholar
  2. 2.
    D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, J. Appl. Phys. 54, 6509 (1983).CrossRefGoogle Scholar
  3. 3.
    J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard, M. Vabre, IEEE Trans. Magn., MAG-21. 498, (1985).CrossRefGoogle Scholar
  4. 4.
    M. Gurvitch, J. P. Remeika, J. M. Rowell, J. Geerk, and W. P. Lowe, IEEE Trans. Magn., MAG-21. 509, (1985).CrossRefGoogle Scholar
  5. 5.
    M. Ashkin, J. R. Gavaler, J. Greggi, and M. Decroux, J. Appl. Phys. 55, 1044 (1984).CrossRefGoogle Scholar
  6. 6.
    M. Igarashi, M. Hikita, and K. Takei, in “Advances in Cryogenic Engineering” 30, 535, Ed. by A. F. Clark and R. P. Reed, Plenum Press (1984).Google Scholar
  7. 7.
    J. J. Cuomo, J. M. E. Harper, C. R. Guamieri, D. S. Lee, L. J. Attanasio J. Angilelo, C. T. Wu, and R. H. Hammond, J. Vac. Sci. Technol. 20, 349 (1982).CrossRefGoogle Scholar
  8. 8.
    C. Weissmantel, Thin Solid Films, 32, 11 (1976);CrossRefGoogle Scholar
  9. 8a.
    H.-J. Herler, G. Reisse, and C. Weissmantel, ibid., 65, 233 (1980)*.Thin Solid FilmsCrossRefGoogle Scholar
  10. 9.
    J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, J. Appl. Phys. 58, 550–563, (1985).CrossRefGoogle Scholar
  11. 10.
    L.-J. Lin, E. K. Track, G.-J. Cui, and D.E. Prober. To appear in Physica B, North-Holland Publishing Co., Eds. K. A. Gschneidner and E. L. Wolf.Google Scholar
  12. 11.
    Ion Tech, Inc., Box 1388, Ft. Collins, Col.Google Scholar
  13. 12.
    D. W. Face, S. T. Ruggiero, and D. E. Prober, J. Vac. Sci. Technol. A2, 326 (1983).Google Scholar
  14. 13.
    Commonwealth Scientific Corp., Alexandria, Va.Google Scholar
  15. 14.
    R. C. Dynes and J. M. Rowell, Phys. Rev. B 11, 1884 (1975).CrossRefGoogle Scholar
  16. 15.
    M. Gurvitch and J. Kwo, in “Advances in Cryogenic Engineering” 30, 509, Ed. by A. F. Clark and R. P. Reed, Plenum Press (1984)Google Scholar
  17. 16.
    S. T. Ruggiero, G. B. Arnold, E. K. Track and D. E. Prober, IEEE Trans. Magn.. MAG-21. 850 (1985).CrossRefGoogle Scholar
  18. 17.
    M. Gurvitch, private communication.Google Scholar
  19. 18.
    D. Van Vechten and J. F. Liebman, J. Vac. Sci. Technol. A3. 1881, 1985.Google Scholar
  20. 19.
    E. L. Wolf and G. B. Arnold, Phys. Reports 91, 31 (1982).CrossRefGoogle Scholar
  21. 20.
    K. H. Gundlach, J. Appl. Phys. 44, 5005 (1973).CrossRefGoogle Scholar
  22. 21.
    W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).CrossRefGoogle Scholar
  23. 22.
    J. Halbritter, IEEE Trans. Magn., MAG-21. 858 (1985).CrossRefGoogle Scholar
  24. 23.
    J. M. Rowell, M. Gurvitch, and J. Geerk, Phys. Rev. B 24, 2278 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. K. Track
    • 1
  • L.-J. Lin
    • 1
  • G.-J. Cui
    • 1
    • 2
  • D. E. Prober
    • 1
  1. 1.Section of Applied PhysicsYale UniversityNew HavenUSA
  2. 2.Peking UniversityChina

Personalised recommendations