The Characterization of Cryogenic Materials by X-Ray Absorption Methods

  • S. M. Heald
  • J. M. Tranquada
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)


X-ray absorption techniques have in recent years been developed into powerful probes of the electronic and structural properties of materials difficult to study by other techniques. In particular, the extended x-ray absorption fine structure (EXAFS) technique can be applied to a variety of cryogenic materials. Three examples will be used to demonstrate the power of the technique. The first is the determination of the lattice location of dilute alloying additions such as Ta and Zr in Nb3Sn. The Ta additions are shown to reside predominately in Nb lattice sites, while Zr is not uniquely located at either Nb or Sn sites. In addition to structural information, temperature dependent EXAFS studies can be used to determine the rms deviations of atomic bond lengths, providing information about the temperature dependence of interatomic force constants. For Nb3Sn deviations are found from simple harmonic behavior at low temperatures which indicate a softening of the Nb-Sn bond strength. The final example is the study of interfacial properties in thin film systems. This is accomplished by making x-ray absorption measurements under conditions of total external reflection of the incident x-rays. As some examples will show this technique has great potential for studying interfacial reactions, a process used in the fabrication of many superconducting materials.


Total External Reflection Cryogenic Material Atomic Bond Length Bronze Process Ternary Molybdenum Chalcogenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Stern and S. M. Heald, Basic principles and applications of EXAFS, in: “Handbook on Synchrotron Radiation,” E. E. Koch, ed., North Holland, Amsterdam (1983), pp. 955–1014.Google Scholar
  2. 2.
    “EXAFS Spectroscopy,” B. K. Teo and D. C. Joy, eds., Plenum, New York (1981).Google Scholar
  3. 3.
    “EXAFS and Near Edge Structure,” A. Bianconi, L. Incoccia, and S. Stipcich, eds., Springer-Verlag, Berlin (1983).Google Scholar
  4. 4.
    “Synchrotron Radiation Research,” H. Winick and S. Doniach, eds., Plenum, New York (1980).Google Scholar
  5. 5.
    E. A. Stern, D. E. Sayers, and F. W. Lytle, Extended x-ray absorption fine-structure technique. III. Determination of physical parameters, Phys. Rev. B 11:4836–4846 (1975).CrossRefGoogle Scholar
  6. 6.
    J. D. Livingston, Effect of Ta additions to bronze-processed Nb3Sn superconductors, IEEE Trans. Magn. MAG-14:611 (1978).CrossRefGoogle Scholar
  7. 7.
    M. Suenaga, D. O. Welch, R. L. Sabatini, O. F. Kämmerer, and S. Okuda, Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of “bulk” pure and alloyed Nb3Sn produced by the bronze process, to be published.Google Scholar
  8. 8.
    J. Tafto, M. Suenaga, and D. O. Welch, Crystal site determination of dilute alloying elements in polycrystalline Nb3Sn superconductors using a transmission electron microscope, J. Appl. Phys. 55:4330–4333 (1984).CrossRefGoogle Scholar
  9. 9.
    M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luhman, Superconducting properties of (Nb,Ta)3Sn wires fabricated by the bronze process, Adv. in Cryogenic Engineering-Materials 26:442 (1980).Google Scholar
  10. 10.
    L. Pintschovius, H. Takei, and N. Toyota, Phonon anomalies in Nb3Sn. Phys. Rev. Lett. 54:12 (1985);CrossRefGoogle Scholar
  11. 10a.
    J. D. Axe and G. Shirane, Inelastic-neutron-scattering study of acoustic phonons in Nb3Sn, Phys. Rev. B 8:1965 (1973).CrossRefGoogle Scholar
  12. 11.
    B. P. Schweiss, B. Renker, E. Scheider, and W. Reichardt, Phonon spectra of A15 compounds and ternary molybdenum chalcogenides, in: “Superconductivity in d- and f-band Metals,” D. H. Douglass, ed., Plenum Press, New York (1976), pp. 189–208.CrossRefGoogle Scholar
  13. 12.
    K. R. Keller and J. J. Hanak, Ultrasonic measurements in singlecrystal Nb3Sn. Phys. Rev. 154:629 (1967).Google Scholar
  14. 13.
    C. C. Yu and P. W. Anderson, Local-phonon model of strong electronphonon interactions in A15 compounds, Phys. Rev. B 29:6165 (1984);CrossRefGoogle Scholar
  15. 13a.
    L. R. Testardi, Structural instability, anharmonicity, and high temperature superconductivity in A15-structure compounds, Phys. Rev. B 5:4342 (1972).CrossRefGoogle Scholar
  16. 14.
    J.-L. Staudenmann and L. R. Testardi, X-ray determination of anharmonicity in V3Si, Phys. Rev. Lett. 43:40 (1979).CrossRefGoogle Scholar
  17. 15.
    R. A. Hamm and J. M. Vandenberg, A study of the initial growth kinetics of the copper-aluminum thin-film interface reaction by in situ x-ray diffraction and Rutherford backscattering analysis, J. Appl. Phys. 56:293 (1984).CrossRefGoogle Scholar
  18. 16.
    H. T. G. Hentzell, R. D. Thompson, and K. N. Tu, Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation, J. Appl. Phys. 54:6923 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. M. Heald
    • 1
  • J. M. Tranquada
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations