Cryogenic Fe-Mn Austenitic Steels

  • T. Horiuchi
  • R. Ogawa
  • M. Shimada
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)

Abstract

It is taken for granted that structural materials used for superconducting magnets of a fusion reactor must combine strength, toughness and fatigue resistance especially in case of welded structures at cryogenic temperatures. Austenitic Fe-Mn alloys were expected to be promising candidates to meet the above requirements. However, they proved to have some problems to be overcome in terms of cryogenic brittle fractures. To optimize the mechanical properties, chromium, nickel, nitrogen and other elements were added to Fe-Mn alloy. Consequently, 22Mn-13Cr-5Ni steel has been developed as the candidate steel. Optimum manufacturing conditions have been established and the steel has been tested at cryogenic temperatures. The results show that the steel maintains satisfactory strength of more than 1.2 GPa and fracture toughness of more than 200 MPa\(\sqrt m \) at 4 K.

Keywords

Permeability Fatigue Nickel Furnace Weldability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Kobe Steel’s Non-Magnetic Steel Plate NONMAGNE 30” Report of Kobe Steel, Ltd. (1979)Google Scholar
  2. 2.
    H. Yoshimura, H. Masumoto and T. Inoue, “Adv. Cryo. Eng.” vol.28, Plenum Press, N.Y. (1981), p.115Google Scholar
  3. 3.
    K. Ohnishi and R. Miura, Tetsu-to-Hagane 60: S1989 (1980)Google Scholar
  4. 4.
    R. Miura, H. Nakajima, Y. Takahasbi and K. Yoshida, “Adv. Cryo. Eng.” vol.30, Plenum Press, N.Y. (1983), p.245Google Scholar
  5. 5.
    J. W. Morris, Jr., S. K. Hwang, K. A. Yushchenko, V. I. Belotzerkovetz and O. G. Kvasnevskii, “Adv. Cryo. Eng.” vol.24, Plenum Press, N.Y. (1978), p.91Google Scholar
  6. 6.
    J. Namekata and K. Higashi, Tetsu-to-Hagane 66: S355 (1980)Google Scholar
  7. 7.
    T. Kato, S. Fukui, M. Fujikura and K. Isbida, Trans. Iron Steel Inst. Jpn 16: 16 (1976)Google Scholar
  8. 8.
    J. Namekata and Y. Kondo, Tetsu-to-Hagane 68: S1464 (1982)Google Scholar
  9. 9.
    Y. Tomota and J. W. Morris, Jr., Tetsu-to-Hagane 70: S503 (1984)Google Scholar
  10. 10.
    J. W. Morris, Jr. and E. N. C. Dalder, R&D - Kobe Steel Engineering Reports 34: 1 (1984)Google Scholar
  11. 11.
    J. Namekata, Y. Kondo and T. Matsumoto, Tetsu-to-Hagane 69: S1482 (1983)Google Scholar
  12. 12.
    H. Schumann, Krist. Tech 10: 1141 (1974)CrossRefGoogle Scholar
  13. 13.
    P. Y. Volosevich, V. N. Gridnev and Y. N. Petrov, Phys. Met. Metalligr. 42: 372 (1976)Google Scholar
  14. 14.
    T. Matsumura, Y. Kondo and J. Namekata, Tetsu-to-Hagane 70: S1292 (1984)Google Scholar
  15. 15.
    K. Shibata and T. Fujita, Tetsu-to-Hagane 71: S601 (1985)Google Scholar
  16. 16.
    J. W. Morris, Jr., Private CommunicationGoogle Scholar
  17. 17.
    K. Yoshida, K. Koizumi, H. Nakajima, M. Shimada, Y. Sanada, Y. Takahashi, E. Tada, H. Tsuji and S. Shimamoto, “Proc. ICMC Kobe Japan” Butterworths, Guildford, (1982) p.417Google Scholar
  18. 18.
    T. Horiuchi, R. Ogawa, M. Shimada, S. Tone, M. Yamaga and Y. Kasamatsu, “Adv. Cryo. Eng.” vol.28, Plenum Press, N.Y., (1981), p.93Google Scholar
  19. 19.
    R. Ogawa, M. Shimada, Y. Kanetsuki and T. Horiuchi, “Proc. 33th meeting Cryogenic Association Japan” (1981) C2–4Google Scholar
  20. 10.
    T. Horiuchi, R. Ogawa and M. Shimada, R&D - Kobe Steel Engineering Reports 34: 53 (1984)Google Scholar
  21. 21.
    Y. Takahashi, K. Yoshida, M. Shimada, E. Tada, R. Miura and S. Shimamoto, “Adv. Cryo. Eng.” vol.28, Plenum Press, N.Y. (1981), p.73Google Scholar
  22. 22.
    W. M. Small and R. D. Pehlke, Trans Met. Soc. AIME 242: 2501 (1968)Google Scholar
  23. 23.
    R. Ogawa and J. W. Morris, Jr., Tetsu-to-Hagane 70: S498 (1984)Google Scholar
  24. 24.
    H. Nakajima, K. Yoshida, Y. Takahashi, M. Shimada, S. Tone, R. Ogawa, M. Yamaga, H. Kaji, T. Horiuchi and Y. Kasamatsu, “Proc. ICMC Kobe Japan” Butterworths, Guildford, (1982), p.405Google Scholar
  25. 25.
    H. Kaji, M. Hiromatsu, S. Tone, M. Shimada and S. Shimamoto, R & D — Kobe Steel Engineering Reports 34: 57 (1984)Google Scholar
  26. 26.
    S. Tone, M. Shimada, T. Horiuchi, Y. Kasamatsu, H. Nakajima and S. Shimamoto, “Adv. Cryo. Eng.” vol.30, Plenum Press, N.Y. (1983) p.145Google Scholar
  27. 27.
    S. Tone, M. Hiromatsu, H. Kaji, M. Shimada, H. Nakajima and S. Shimamoto, Tetsu-to-Hagane 70: S502 (1984)Google Scholar
  28. 28.
    S. Tone, M. Hiromatsu, H. Kaji, R. Ogawa and S. Shimamoto, Tetsu-to-Hagane 71: S506 (1985)Google Scholar
  29. 29.
    K. Katagiri, R. Ogawa, G. M. Chang and J. W. Morris, Jr., Private CommunicationGoogle Scholar
  30. 30.
    R. Ogawa and J. W. Morris, Jr., in “Fatigue at Low Temperatures” ASTM STP857 R. I. Stephens ed., American Society for Testing and Materials, Philadelphia (1985), p.47CrossRefGoogle Scholar
  31. 31.
    S. Tone, M. Hiromatsu, J. Numata, T. Horiuchi, H. Nakajima, and S. Shimamoto, to be published in “Adv. Cryo. Eng.” vol.32Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. Horiuchi
    • 1
  • R. Ogawa
    • 1
  • M. Shimada
    • 1
  1. 1.Kobe Steel, Ltd.Chuo-ku, KobeJapan

Personalised recommendations